4733 Probability \＆Statistics 2

1	$\frac{105.0-\mu}{\sigma}=-0.7 ; \frac{110.0-\mu}{\sigma}=-0.5$ Solve： $\begin{aligned} & \sigma=25 \\ & \mu=122.5 \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { A1 } & \\ & \\ \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & 6 \end{array}$	Standardise once，equate to Φ^{-1} ，allow σ^{2} Both correct including signs \＆σ ，no cc （continuity correction），allow wrong z Both correct z－values．＂ 1 －＂errors：M1A0B1 Get either μ or σ by solving simultaneously σ a．r．t． 25.0 $\mu=122.5 \pm 0.3$ or 123 if clearly correct，allow from σ^{2} but not from $\sigma=-25$ ．
2	$\operatorname{Po}(20) \approx \mathrm{N}(20,20)$ Normal approx．valid as $\lambda>15$ $\begin{aligned} & 1-\Phi\left(\frac{24.5-20}{\sqrt{20}}\right)=1-\Phi(1.006) \\ & =1-0.8427=\mathbf{0 . 1 5 7 3} \end{aligned}$	$\begin{array}{\|lr\|} \hline \text { M1 } & \\ \text { A1 } & \\ \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \mathbf{6} \\ \hline \end{array}$	Normal stated or implied $(20,20)$ or $(20, \sqrt{ } 20)$ or $\left(20,20^{2}\right)$ ，can be implied ＂Valid as $\lambda>15$＂，or＂valid as λ large＂ Standardise 25，allow wrong or no cc，$\sqrt{ } 20$ errors $1.0<z \leq 1.01$ Final answer，art 0.157
3	$\mathrm{H}_{0}: p=0.6, \mathrm{H}_{1}: p<0.6$ where p is proportion in population who believe it＇s good value $\begin{aligned} R \sim \mathrm{~B}(12,0.6) & \\ \alpha: \quad \mathrm{P}(R \leq 4) & =0.0573 \\ & >0.05 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { B2 } \\ \\ \text { M1 } \\ \text { A1 } \\ \text { B1 } \end{array}$	Both，B2．Allow π ，\％ One error，B1，except x or \bar{x} or r or R ： 0 $\mathrm{B}(12,0.6)$ stated or implied，e．g． $\mathrm{N}(7.2,2.88)$ Not $\mathrm{P}(<4)$ or $\mathrm{P}(\geq 4)$ or $\mathrm{P}(=4)$ Must be using $\mathrm{P}(\leq 4)$ ，or $\mathrm{P}(>4)<0.95$ and binomial
	$\begin{array}{ll} \beta: & \mathrm{CR} \text { is } \leq 3 \text { and } 4>3 \\ & p=0.0153 \end{array}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	Must be using CR；explicit comparison needed
	Do not reject H_{0} ．Insufficient evidence that the proportion who believe it＇s good value for money is less than 0.6	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \hline & \\ \hline \end{array}$	Correct conclusion，needs $\mathrm{B}(12,0.6)$ and ≤ 4 Contextualised，some indication of uncertainty ［SR： $\mathrm{N}(7.2, \ldots)$ or Po（7．2）：poss B2 M1A0］ ［SR： $\mathrm{P}(<4)$ or $\mathrm{P}(=4)$ or $\mathrm{P}(\geq 4)$ ：B2 M1A0］
4 （i）	Eg＂not all are residents＂； ＂only those in street asked＂	$\begin{array}{\|ll\|} \hline \text { B1 } & \\ \text { B1 } & 2 \\ \hline \end{array}$	One valid relevant reason A definitely different valid relevant reason Not＂not a random sample＂，not＂takes too long＂
（ii）	Obtain list of whole population Number it sequentially Select using random numbers ［Ignore method of making contact］	$\begin{array}{\|ll} \hline \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & 3 \end{array}$	＂Everyone＂or＂all houses＂must be implied Not＂number it with random numbers＂unless then ＂arrange in order of random numbers＂ SR：＂Take a random sample＂：B1 SR：Systematic：B1 B0，B1 if start randomly chosen
（iii）	Two of：α ：Members of population equally likely to be chosen β ：Chosen independently／randomly γ ：Large sample（e．g．＞30）	$\begin{array}{ll} \text { B1 } & \\ \text { B1 } & 2 \end{array}$	One reason．NB ：If＂independent＂，must be ＂chosen＂independently，not＂views are independent＂ Another reason．Allow＂fixed sample size＂but not both that and＂large sample＂．Allow＂houses＂

5 （i）	Bricks scattered at constant average rate \＆independently of one another	$\begin{array}{\|ll\|} \hline \text { B1 } & \\ \text { B1 } & 2 \end{array}$	B1 for each of 2 different reasons，in context． （Treat＂randomly＂\equiv＂singly＂\equiv＂independently＂）
（ii）	$\begin{array}{r} \mathrm{Po}(12) \\ \mathrm{P}(\leq 14)-\mathrm{P}(\leq 7)[=.7720-.0895] \\ {[\text { or } \mathrm{P}(8)+\mathrm{P}(9)+\ldots+\mathrm{P}(14)]} \\ =\mathbf{0 . 6 8 2 5} \end{array}$	B1 M1 A1 3	Po（12）stated or implied Allow one out at either end or both，eg 0.617 ，or wrong column，but not from Po（3）nor，eg，． 9105 － .7720 Answer in range［0．682，0．683］
（iii）	$\begin{aligned} & e^{-\lambda}=0.4 \\ & \lambda=-\ln (0.4) \\ & =0.9163 \\ & \text { Volume }=0.9163 \div 3=\mathbf{0 . 3 0 5} \end{aligned}$	 B1 M1 A1 M1 4	This equation，aef，can be implied by，eg 0.9 Take ln，or 0.91 by T \＆I λ art 0.916 or 0.92 ，can be implied Divide their λ value by 3 ［SR：Tables，eg 0．9 $\div 3$ ：B1 M0 A0 M1］
6 （i）	$\begin{aligned} & 33.6 \\ & \frac{115782.84}{100}-33.6^{2}[=28.8684] \\ & \times \frac{100}{99} \quad=\mathbf{2 9 . 1 6} \end{aligned}$	B1 M1 M1 A1 4	33.6 clearly stated［not recoverable later］ Correct formula used for biased estimate $\times \frac{100}{99}$ ，M＇s independent．Eg $\frac{\Sigma r^{2}}{99}\left[-336^{2}\right]$ SR B1 variance in range［29．1，29．2］
（ii）	$\begin{aligned} \begin{array}{l} \bar{R} \sim \mathrm{~N}(33.6,29.16 / 9) \\ =\mathrm{N}\left(33.6,1.8^{2}\right) \\ 1-\Phi\left(\frac{32-33.6}{\sqrt{3.24}}\right) \end{array} & {[=\Phi(0.8889)] } \\ & =\mathbf{0 . 8 1 3 0} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	Normal，their μ ，stated or implied Variance［their（i）］$\div 9 \quad[$ not $\div 100$ ］ Standardise \＆use $\Phi, 9$ used，answer >0.5 ， allow $\sqrt{ }$ errors，allow cc 0.05 but not 0.5 Answer，art 0.813
（iii）	No，distribution of R is normal so that of \bar{R} is normal	B2 2	Must be saying this．Eg＂ 9 is not large enough＂： B0．Both：B1 max，unless saying that n is irrelevant．
7 （i）	$\begin{aligned} & \frac{2}{9} \int_{0}^{3} x^{3}(3-x) d x=\frac{2}{9}\left[\frac{3 x^{4}}{4}-\frac{x^{5}}{5}\right]_{0}^{3}[=2.7]- \\ & (11 / 2)^{2} \quad=\frac{9}{20} \text { or } \mathbf{0 . 4 5} \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { A1 } & \\ \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & 5 \\ \hline \end{array}$	```Integrate \(\chi^{2} \mathrm{f}(x)\) from 0 to 3 [not for \(\mu\)] Correct indefinite integral Mean is \(1 \frac{1}{2}\), soi [not recoverable later] Subtract their \(\mu^{2}\) Answer art 0.450```
（ii）	$\begin{aligned} \frac{2}{9} \int_{0}^{0.5} x(3-x) d x & =\frac{2}{9}\left[\frac{3 x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{0.5} \\ & =\frac{2}{27} \mathrm{AG} \end{aligned}$	$\begin{array}{\|ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$	Integrate $\mathrm{f}(x)$ between $0,0.5$ ，must be seen somewhere Correctly obtain given answer $\frac{2}{27}$ ，decimals other than 0.5 not allowed， 1 more line needed（eg［ ］＝ 1／3）
（iii）	$\begin{aligned} & \mathrm{B}\left(108, \frac{2}{27}\right) \\ & \approx \mathrm{N}(8,7.4074) \\ & 1-\Phi\left(\frac{9.5-8}{\sqrt{7.4074}}\right) \\ & =1-\Phi(0.5511) \\ & =\mathbf{0 . 2 9 1} \end{aligned}$	$\begin{array}{ll}\text { B1 } & \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \\ \text { A1 } & \\ \text { A1 } & 6\end{array}$	B（108，$\frac{2}{27}$ ）seen or implied，eg Po（8） Normal，mean 8 ．．． ．．．variance（or SD）200／27 or art 7.41 Standardise 10，allow $\sqrt{ }$ errors，wrong or no cc， needs to be using $\mathrm{B}(108, \ldots)$ Correct $\sqrt{ }$ and cc Final answer，art 0.291

（iv）	$\bar{X} \sim N\left(1.5, \frac{1}{240}\right)$	B1 B1 $\sqrt{ }$ B1 $\sqrt{ } 3$	Normal \quad NB：not part（iii） Mean their μ Variance or SD（their 0.45 ）／108［not（8，50／729）］
8 （i）	$\begin{aligned} & \mathrm{H}_{0}: \mu=78.0 \\ & \mathrm{H}_{1}: \mu \neq 78.0 \\ & z=\frac{76.4-78.0}{\sqrt{68.9 / 120}}=-2.1115 \\ & >-2.576 \text { or } 0.0173>0.005 \end{aligned}$	B1 B1 M1 A1 B1	Both correct，B2． One error，B1，but x or $\bar{x}: B 0$ ． Needs $\pm(76.4-78) / \sqrt{ }(\sigma \div 120)$ ，allow $\sqrt{ }$ errors art -2.11 ，or $p=0.0173 \pm 0.0002$ Compare z with（－）2．576，or p with 0.005
	$\begin{gathered} 78 \pm z \sqrt{ }(68.9 / 120) \\ =76.048 \\ 76.4>76.048 \end{gathered}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \sqrt{ } \end{aligned}$ B1	Needs 78 and 120，can be－only Correct CV to 3 sf，$\sqrt{ }$ on z $z=2.576$ and compare 76．4，allow from $78 \leftrightarrow$ 76.4
	Do not reject H_{0} ．Insufficient evidence that the mean time has changed	M1 $\mathrm{A} 1 \sqrt{ } 7$	Correct comparison \＆conclusion，needs 120， ＂like with like＂，correct tail， \bar{x} and μ right way round Contextualised，some indication of uncertainty
（ii）	$\begin{aligned} & \frac{1}{\sqrt{68.9 / n}}>2.576 \\ & V_{n}>21.38 \\ & n_{\min }=458 \\ & \text { Variance is estimated } \end{aligned}$	M1 M1 A1 B1 4	IGNORE INEQUALITIES THROUGHOUT Standardise 1 with n and 2.576 ，allow $\sqrt{ }$ errors，cc etc but not 2.326 Correct method to solve for $\sqrt{ } n($ not from n ） 458 only（not 457 ），or 373 from 2．326，signs correct Equivalent statement，allow＂should use t＂．In principle nothing superfluous，but＂variance stays same＂B1 bod

