4733 Probability \＆Statistics 2

Penalise over－specified answers（＞ 6 SF ）first time but only once per paper．
Use（A）or（Cto annotate＂over－assertive＂or＂no context＂respectively

1	$\begin{aligned} & \hat{\mu}=\bar{x}=15.16 \\ & \hat{\sigma}^{2}=\frac{5}{4} s^{2} \end{aligned}$ $=1.363$	$\begin{array}{\|l} \hline \text { B1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \hline \end{array}$	4	15.16 or 15.2 as answer only $\text { Use } \frac{\Sigma x^{2}}{5}-\bar{x}^{2} \quad[=1.0904]$ Multiply by $5 / 4$ ，or equiv for single formula Final answer 1.36 or 1.363 only，not isw
2 （i）	Not all equally likely－those in range 0 to 199 more likely to be chosen	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Not all equally likely stated or implied Justified by reference to numbers，no spurious reasons
	Ignore random numbers greater than 799，or 399	B1	1	Any valid resolution of this problem，no spurious reasons
3	$\begin{aligned} & \mathrm{B}(60,0.35) \approx \mathrm{N}(21,13.65) \\ & \begin{aligned} & \Phi\left(\frac{18.5-21}{\sqrt{13.65}}\right)= \Phi(-0.6767) \\ &=1-0.7507 \end{aligned} \\ & =\mathbf{0 . 2 4 9 3} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	6	$\mathrm{B}(60,0.35)$ stated or implied $\mathrm{N}(21, \ldots)$ Variance or SD $=13.65$ Standardise，their $n p$ and $\sqrt{ } n p q$ or $n p q$ ， wrong or no cc Both $\sqrt{ } n p q$ and cc correct Answer，a．r．t． 0.249
4	$\begin{aligned} & \mathrm{H}_{0}: \mu=60 ; \mathrm{H}_{1}: \mu<60 \\ & (\alpha) \quad z=\frac{58.9-60}{\sqrt{5^{2} / 80}}=-1.967 \\ & \\ & \quad<-1.645 \end{aligned}$	$\begin{aligned} & \hline \mathrm{B} 2 \\ & \\ & \text { M1 } \\ & \text { A1 } \\ & \mathrm{B} 1 \end{aligned}$		Both correct，B2 B1 for one error，but not x, t, \bar{x} or \bar{t} Standardise $58.9 \& \sqrt{ } 80$ ，allow - or $\sqrt{ }$ errors z ，art -1.97 or p in range［0．024，0．025］ Explicit comparison with -1.645 or 0.05 ，or +1.645 or 0.95 if 1.967 or 0.976 used
	$\begin{gathered} (\beta)_{c}=60-1.645 \times \frac{5}{\sqrt{80}}=59.08 \\ 58.9<59.08 \end{gathered}$	M1 B1 A1．		$60-z \times 5 / \sqrt{80}$ ，any $z=\Phi^{-1}$ ，allow $\sqrt{ }$ errors or \pm ，not just $+; z=1.645$ and compare 58.9 59.1 or better， on wrong z
	Reject H_{0} Significant evidence that people underestimate time	M1 A1．	7	Correct first conclusion，needs essentially correct method including $\sqrt{ } 80$ or 80 Contextualised，uncertainty acknowledged SR：$\mu=58.9$ ：B0M1A0B1 max $2 / 7$ SR：2－tail：max 5／7
5 （i）	$\begin{aligned} \mathrm{H}_{0}: \lambda= & 11.0 \\ \mathrm{H}_{1}: \lambda & >11.0 \\ (\alpha) \quad & \mathrm{P}(\geq 19)=1-0.9823 \\ & =0.0177 \\ & <0.05 \end{aligned}$	$\begin{aligned} & \hline \text { B2 } \\ & \\ & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$		Allow μ ．Both correct，B2 One error：B1，but not C ，x etc Find $\mathrm{P}(\geq 19)$［or $\mathrm{P}(<19)$ if later 0．95］ art $0.0177 \quad$［0．9823，ditto］ Compare 0.05 ［ 0.95 if consistent］，needs M1
		M1 A1 B1		CR or CV 16／17／18／19 stated or clearly implied，but not＜ 18 and 0.0322 both seen，allow 0.9678 Explicit comparison with 19，needs M1
	Reject H_{0} Significant evidence of an increase in number of customers		7	Needs essentially correct method \＆ comparison Contextualised，uncertainty acknowledged SR：Normal，or $\mathrm{P}(=19)$ or $\mathrm{P}(\leq 19)$ or $P(>19)$ ：First B2 only．
（ii）	Can＇t deduce cause－and－effect，or there may be other factors	B1	1	Conclusion needed．No spurious reasons． If＂DNR＂in（i），＂couldn’t deduce even if．．．＂

6 （i）	（a）Probabilities don＇t total 1	B1	1	Equivalent statement
	（b）$\quad \mathrm{P}(>70)$ must be＜P (>50)	B1	1	Equivalent statement
	（c）$\quad \begin{array}{ll}\mathrm{P}(>50)=0.3 \Rightarrow \mu<50 \\ \mathrm{P}(<70)=0.3 \Rightarrow \mu>70\end{array}$	B1	1	Any relevant valid statement，e．g．＂P（＜50） $=0.7$ but $\mathrm{P}(<50)$ must be $<\mathrm{P}(<70)$＂
（ii）	$\mu=60$ by symmetry $\begin{aligned} & \frac{10}{\sigma}=\Phi^{-1}(0.7)=0.524(4) \\ & \sigma=10 / 0.5243 \end{aligned}$ $=19.084$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \end{aligned}$	4	$\mu=60$ obtained at any point，allow from Φ One standardisation，equate to Φ^{-1} ，not 0.758 $\Phi^{-1} \in[0.524,0.5245]$ seen σ in range［19．07，19．1］，e．g． 19.073
7 （i）		$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \end{array}$	2	Horizontal line Evidence of truncation ［no need for labels］
（ii）	$\begin{aligned} & \mu=8 \\ & \int_{5}^{11} \frac{1}{6} t^{2} d t=\left[\frac{1}{18} t^{3}\right]_{5}^{11} \quad[=67] \\ & -8^{2} \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	5	8 only，cwd Attempt $\int k t^{2} \mathrm{dt}$ ，limits 5 and 11 seen $k=1 / 6$ stated or implied Subtract their（non－zero）mean ${ }^{2}$ Answer 3 only，not from MF1
（iii）	$\begin{array}{r} \begin{array}{l} \mathrm{N}(8,3 / 48) \\ 1-\Phi\left(\frac{8.3-8}{\sqrt{3 / 48}}\right)=1-\Phi(1.2) \\ =1-0.8848 \end{array} \\ =\mathbf{0 . 1 1 5 1} \end{array}$ Normal distribution only approx．	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \\ & \text { A1 } \\ & \text { B1 } \\ & \hline \end{aligned}$	6	Normal stated or implied Mean 8 Variance their（non－zero）（ii）／48 Standardise，$\sqrt{ } n$ ，ignore sign or $\sqrt{ }$ errors．cc： M0 Answer，art 0.115 Any equivalent comment，e．g．CLT used
8 （i）	$\begin{aligned} & \mathrm{P}(\leq 4)=0.0473 \\ & \text { Therefore CR is } \leq 4 \\ & \mathrm{P} \text { (Type Ierror })=\text {..........73\% } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { B1 } \\ \text { A1 } \\ \hline \end{array}$	3	$\mathrm{P}(\leq r)$ from $\mathrm{B}(10,0.7), r=3 / 4 / 5$ ，not N ＂≤ 4＂stated，not just＂ 4 ＂，nothing else Answer，art 0.0473 or 4.73% ，must be stated
（ii）	$\begin{aligned} & \begin{array}{l} \mathrm{B}(10,0.4) \text { and find } \mathrm{P}(>4) \\ 1-\mathrm{P}(\leq 4) \end{array} \\ & =\mathbf{0 . 3 6 6 9} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \hline \end{array}$	3	Must be this，not isw， on（i） Allow for 0.6177 or 0.1622 Answer，art 0.367
（iii）	0.5×0.3669＝ $\mathbf{0 . 1 8 3 4 5}$	$\begin{aligned} & \mathrm{M} 1 \\ & \text { A1. } \end{aligned}$	2	$0.5 \times \text { (ii) }$ Ans correct to 3 SF，e．g． 0.184 from 0.367

9 （i）	$1-\mathrm{P}(\leq 7)=1-0.9881=\mathbf{0 . 0 1 1 9}$	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { A1 } & 2 \end{array}$	Allow for 0.0038 or 0.0335 Answer，a．r．t． 0.0119			
（ii）	$\begin{aligned} & \text { Po(12) } \\ & \mathrm{P}(\leq 14)-\mathrm{P}(\leq 12) \\ & {[0.7720-0.5760]} \end{aligned}$	$\begin{array}{lr}\text { M1 } \\ \text { M1 } \\ \\ \text { A1 } & \\ \\ \end{array}$	Po（12）stated or implied Formula， 2 consecutive correct terms，or tables，e．g．． 0905 or .3104 or .1629 Answer，art 0.196			
（iii）	$\operatorname{Po}(60) \approx \mathrm{N}(60,60)$ $\Phi\left(\frac{69.5-60}{\sqrt{60}}\right)=\Phi(1.226)$	$\begin{array}{llr}\text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \\ \text { A1 } & \\ \text { A1 } & 5\end{array}$	$\mathrm{N}(60, \ldots)$ Variance or SD 60 Standardise，$\lambda \& \sqrt{ } \lambda$ ，allow λ or wrong or no cc $\sqrt{ } \lambda$ and cc both correct Answer 0.89 or a．r．t． 0.890			
（iv）	（a） $1-\mathrm{e}^{-3 m}(1+3 m)$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } \end{array}$	M1 for one error，e．g．no＂ 1 －＂，or extra term， or $0^{\text {th }}$ term missing；answer，aesf			
	（b）$\quad m=1.29$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Substitute 1.29 or 1.3 into appropriate fn			
	p $=0.89842$		Comp	0.9	0.1	0
	$m=1.3, \quad p=0.9008$		1.29	0.898	0.10158	－． 00158
			1.3	0.901	0.09918	． 0008146
	Straddles 0.9 ，therefore solution between 1.29 and 1.3	A1 4	Explicit comparison with relevant value，\＆ conclusion，needs both ps correct			
or	Method for iteration；1．296．．． 1．2965or better；conclusion stated	$\begin{aligned} & \text { M1A1 } \\ & \text { A1A1 } \end{aligned}$	Can be implied by at least 1．296．．． Need at least 4 dp for M1A2			

