Solutions

1. (a)

	D	E	F
A	20	4	
B		26	6
C			14

(b) $\quad S_{A}=0 \quad S_{B}=-1 \quad S_{C}=7$
$D_{P}=21 \quad D_{E}=24 \quad D_{F}=18$ A1
$I_{13}=I_{A F}=16-0-18=-2$
$I_{21}=I_{B D}=18+1-21=-2$ M1
$I_{31}=I_{C D}=15-7-21=-13\left({ }^{*}\right)$
A1ft
$I_{32}=I_{C E}=19-7-24=-12$ A1ft 5
(c) eg $C D(+) \rightarrow A D(-) \rightarrow A E(+) \rightarrow B E(-) \rightarrow B F(+) \rightarrow C F(-) \quad \theta=14 \mathrm{M} 1 \mathrm{~A} 1 \mathrm{ft}$

	D	E	F
A	6	18	
B		12	20
C	14		

A1ft A1
cost $£ 1384$
2. (a) Deleting F leaves r.s.t

r.s.t. length $=\underline{86}$
s_{0} lower bound $=86+16+19=\underline{121}$
M1
\therefore best L.B is 129 by deleting $C(\mathrm{ft}$ from choice)
M1 a1 4
$\mathrm{B} 1 \mathrm{ft} \quad 1$
(b) Add 33 to $B F$ and $F B$

B1
Add 31 to $D E$ and $E D$
B1 2
(c) Tour, visits each vertex, order correct using table of least distances. M1 A1 e.g. $\left.F \cdot C \begin{array}{lllllllllllll} & D & A & B & E & G & F & \text { (actual route } F & C & D & C & A & B \\ E & G & F\end{array}\right) A 1$ upper bound of 138 km
3. Let $x_{i j}$ be number of units transported from i to j
where $i \in\{W, X, Y\}$ and $j \in\{J, K, L\}$
B1 1
warehouse supermarket

4. (a) The route from start to finish in which the arc of minimum length is as large as possible.
e.g. must be pratical, involve choice of route, have are 'cuts'.
(b)

Stage	State	Action	Value
1	H	HK	18(*)
	I	IK	19(*)
	J	JK	21(*)
2	F	FH	$\min (16,18)=16$
		FI	$\left.\min (23,19)=19{ }^{*}\right)$
		FJ	$\min (17,21)=17$
	G	GH	$\min (20,18)=18$
		GI	$\min (15,19)=15$
		GJ	$\left.\min (28,21)=21{ }^{*}\right)$
3	B	BG	$\left.\min (18,21)=18{ }^{*}\right)$
	C	CF	$\left.\min (25,19)=19{ }^{*}\right)$
		CG	$\min (16,21)=16$
	D	DF	$\min (22,19)=19(*)$
		DG	$\min (19,21)=19(*)$
	E	EF	$\min (14,19)=14(*)$
4	A	AB	$\min (24,18)=18$
		AC	$\min (25,19)=19(*)$
		AD	$\min (27,19)=19(*)$
		AE	$\min (23,14)=14$

M1 A1 2

M1 A1 A1 3

M1 A1ft

A1ft 3
[14]
5. (a) To maximise, subtract all entries from $n \geq 30$
e.g. $\left[\begin{array}{llll}4 & 0 & 0 & 0 \\ 0 & 7 & 4 & 1 \\ 0 & 5 & 3 & 6 \\ 0 & 3 & 5 & 9\end{array}\right]$
[minimum uncovered element is 1: so $\left[\begin{array}{llll}5 & 0 & 0 & 0 \\ 0 & 6 & 3 & 0 \\ 0 & 4 & 2 & 5 \\ 0 & 2 & 4 & 8\end{array}\right] \quad$ M1 A2ft1ft0 $\quad 3$

$\begin{array}{llr}\text { (b) } £ 1160000 & \mathrm{~B} 2,1,0 & 2 \\ \text { (c) Gives other solution } & \mathrm{M} 1 \mathrm{A1ft} & 2\end{array}$
[15]
6. (a) $S S_{1}-47, S S_{2}-87, T_{1} T-S_{1}, T_{2} T-T_{3}$ added to diagram 1 M1 A1 2

If all 4 nos. zero then M0
M1 4 arcs added correctly +4 numbers given
(diagram 1 only) condone lack of arrows
A1 c.a.o. (diagram 1 only) penalise arrow errors here
(b)

$$
\begin{array}{rllllll}
\mathrm{SS}_{1} & \rightarrow 0, \quad \mathrm{SS}_{2} & \rightarrow 38, \quad \mathrm{~T}, \mathrm{~T} & \rightarrow 8, & \mathrm{~T}_{2} \mathrm{~T} & \rightarrow 20 & \mathrm{M} 1 \mathrm{~A} 1
\end{array}
$$

M1 4 arcs, 2 numbers and 2 arrows \longleftarrow per arc
A1 c.a.o.
(c) e.g. $\quad S \quad S_{2} A$
$\begin{array}{llllll}S & S_{2} & C & E & T_{2} & T-1\end{array}$
M1
$\begin{array}{llllll}S & S_{2} & C & E & D & T_{2} T-10\end{array}$
A4,3,2,1,0
$\begin{array}{llllllll}S & S_{2} & C & E & B & D & T_{1} & T-4\end{array}$
Maximum flow - 113
B1 6
M1 2 correct routes + flows found (flow > 10 gets M0) (condone initial f.a.
routes only if clearly repeated from
new ones)
A4 all flows + routes to 15 more or flow increased above
17 more
A2 ≥ 3 flows + routes to 11 more or
A1 at least 2 flows + routes found to 5 more
B1 113 c.a.o.
(d) e.g.

M1 consistent flow of 101(*), complete clear (doesn't need to ft from (c))
A1 correct flow of 113 including arrows
(e) Max flow - min cut theorem; cut $A T_{1}, A D, S_{1} B, S_{2} B, B C, C E$

M1 flow of $113+$ cut attempted + max flow - min cut theorem referred to (3 out of 4)
A1 c.a.o.
(f) Idea of a directed flow along arcs; from S to T; through a system/network; practical

B2 all 4 bits there
B1 2 out of 4 there
7. (a) A zero-sum game is one in which the sum of the gains for all players

B1 1 is zero. (o.e.)
$\begin{array}{llllll}\text { (b) } & & \text { I } & \text { II } & \text { III } & \\ & \text { I } & 5 & 2 & 3 & \min 2\end{array}$
$\begin{array}{lllll}\text { II } & 3 & 5 & 4 & \min 3\end{array} \leftarrow$ max
$\max 5 \quad 5 \quad 4$
min
Since $3 \neq 4$ not stable
(c) Let A play I with probability p

Let A play II with probability $(1-p)$
If B plays I A's gains are $5 p+3(1-p)=2 p+3$
If B plays II A's gains are $2 p+5(1-p)=5-3 p$
M1 A1 2
If B plays III A's gains are $3 p+4(1-p)=4-p$

Intersection of $2 p+3$ and $4-p \Rightarrow p=\frac{1}{3}$
M1 A1ft 2
\therefore A should play I $\frac{1}{3}$ of time and II $\frac{2}{3}$ of time; value (to A) $=3 \frac{2}{3} \mathrm{~A} 1 \mathrm{ft}$ A1ft 2
(d) Let B play I with probability q_{1},

II with probability q_{2} and III with probability q_{3}
e.g. Let $x_{1}=\frac{q_{1}}{v} \quad x_{2}=\frac{q_{2}}{v} \quad x_{3}=\frac{q_{3}}{v}$

Maximise $\mathrm{P}=x_{1}+x_{2}=x_{3}$
subject to $5 x_{1}+2 x_{2}+3 x_{3} \leq 1$
$3 x_{1}+5 x_{2}+4 x_{3} \leq 1$
A2,1,0
5
$x_{1}, x_{2}, x_{3} \geq 0$

Alt 1
e.g. $\left[\begin{array}{ll}-5 & -3 \\ -2 & -5 \\ -3 & -4\end{array}\right] \rightarrow\left[\begin{array}{ll}1 & 3 \\ 4 & 1 \\ 3 & 2\end{array}\right]$
maximise $\mathrm{P}=\mathrm{V}$
subject to $v-q_{1}-4 q_{2}-3 q_{3} \leq 0$

$$
\begin{array}{ll}
v-3 q_{1}-q_{2}-2 q_{3} \leq 0 & q_{1}+q_{2}+q_{3} \leq 1 \\
v, q_{1}, q_{2}, q_{3} \geq 0 & \text { or }=1
\end{array}
$$

8. (a) r, s and t are unused amounts of bird seed (in kg), suet blocks and peanuts (in kg) that Polly has at the end of each week after shehas made up and sold her packs

B2 Ref to "unused" "bird seed, suet blocks \& peanuts"
B1 Ref to "unused" or bird seed etc or muddled
explanation.
"bad" gets B1 must engage with context
(b)

b.v.	x	y	z	r	s	t	value	
z	$\frac{2}{5}$	$\frac{1}{2}$	1	$\frac{1}{10}$	0	0	14	$\mathrm{R}_{1} \div 10$

t		$\frac{1}{2}$	0	$-\frac{3}{10}$	0		18	$\mathrm{R}_{3}-3 \mathrm{R}$	A2ft, 1ft, 0	5
p	-90	-25	0	65	0	0	9100	$\mathrm{R}_{4}+65$		
	M1 correct pivot									
	A1 pivot row correct c.a.o. incl.bv									
	M1ft correct row operations used (all 3) - at least 1 non zero or 1 term correct in each row. Where row not $\mathrm{ft} \Rightarrow \mathrm{MO}$									
	A2ft non-pivoted rows correct; -1 each error ft on error in pivot choice only. Penalise b.v once only									
(c)	$x=0 \quad y=0$			$14 r=0$		$=4$			M1 A2ft, 1ft, 0	3
		$\begin{aligned} & M \\ & b . \\ & A r \end{aligned}$		variable value c egatives	$\begin{aligned} & \text { state } \\ & \text { umns } \\ & 10 \end{aligned}$	$\begin{aligned} & d-n \\ & \text { on } t \end{aligned}$	ust have bleau.	complete		
	A1ft all 7 c.a.o. Need $£ 91 \mathrm{ft} \mathrm{but} \mathrm{accept} 9100$									
	A1ft at least 4 c.a.o. (condone P = 9100ft)									
(d)	$p-90 x-2 \sqrt{y}+65 r=9100$ (o.e.)								M1 A1ft	2
	M1ft P, (-)90x, (-)25y, 65 and 9100 (or 91) all present and one $=$ sign									
	A1ft c.a.o. (o.e.)									
(e)	$p=9100+90 x+25 y-65 r$									
	B1ft stating that increasing x or y would increase profit, probably re-arranging profit equation. Generous.									
	The $\frac{2}{5}$	in the x column and $2^{\text {nd }}(s)$ row.							B2ft, 1ft, 0	2
		B2ft $\frac{2}{5}$ identified, x column and $2^{\text {nd }}(s)$ row.								

(b) Notes

1. Wrong pivot chosen in col 2 (-usually 4) M0 then for M1A2ft
(a)

b.v.	x	y	z	r	s	t	value	
r	-1	$2 \frac{1}{2}$	0	1	-2 $\frac{1}{2}$	0	-10	$\mathrm{R}_{1}-10 \mathrm{R}_{2}$
z	$\frac{1}{2}$	$\frac{1}{4}$	1	0	$\frac{1}{4}$	0	15	$\mathrm{R}_{2} \div 4$
t	$-\frac{1}{2}$	(19)	0	0	$-\frac{3}{4}$	1	15	$\mathrm{R}_{3}-3 \mathrm{R}_{2}$
p	-25	-187 $\frac{1}{2}$	0	0	$\begin{gathered} 162 \\ \frac{1}{2} \end{gathered}$	0	9750	$\mathrm{R}_{4}+650 \mathrm{R}_{2}$

(b)

b.v.	x	y	z	r	s	t	value	
r	$\frac{2}{3}$	$-1 \frac{2}{3}$	0	1	0	$\frac{-10}{3}$	-60	$\mathrm{R}_{1}-10 \mathrm{R}_{3}$
s	$\frac{2}{3}$	$-1 \frac{2}{3}$	0	0	1	$\frac{-4}{3}$	-20	$\mathrm{R}_{2}-4 \mathrm{R}_{3}$
z	$\left(\frac{1}{3}\right)$	$\frac{2}{3}$	1	0	0	$\frac{1}{3}$	20	$\mathrm{R}_{3} \div 3$
	$-133 \frac{1}{3}$	$83 \frac{1}{3}$	0	0	0	$216 \frac{2}{3}$	13000	$\mathrm{R}_{4}+650 \mathrm{R}_{3}$

2. MISREADS - use col x or col y (-2 A marks if earned)
(a)

b.v.	x	y	z	r	s	t	value	
r	0	3	2	1	-2	0	20	$\mathrm{R}_{1}-4 \mathrm{R}_{2}$
x	1	$\frac{1}{2}$	2	0	$\frac{1}{2}$	0	30	$\mathrm{R}_{2} \div 2$
t	0	$1 \frac{1}{2}$	1	0	$-\frac{1}{2}$	1	30	$\mathrm{R}_{3}-\mathrm{R}_{2}$
p	0	-175	50	0	175	0	10500	$\mathrm{R}_{4}+350 \mathrm{R}_{2}$

(b)

b.v.	x	y	z	r	s	t	value	
y	$\frac{4}{5}$	1	2	$\frac{1}{5}$	0	0	28	$\mathrm{R}_{1}-5$
s	$\left(1 \frac{1}{5}\right)$	0	2	$-\frac{1}{5}$	1	0	32	$\mathrm{R}_{2}-\mathrm{R}_{1}$
t	$-\frac{3}{5}$	0	-1	$-\frac{2}{5}$	0	1	4	$\mathrm{R}_{3}-2 \mathrm{R}_{1}$
p	-70	0	50	70	0	0	9800	$\mathrm{R}_{4}+350 \mathrm{R}_{2}$

9.

(a) SADT - 8 SCET - $11 \quad$ SBFT - 9
B2, 1, 0
(b)

(c) (i)

		M1	
		A1	2
e.g.			
S A C D T - 2	S C F T -6	A1	
S A C E F T -3	S A C F T -1	A1	3
\quad max flow 40			

(ii) eg.

M1 A1 2
(iii) Max flow - min cut theorem
cut $\mathrm{AD}, \mathrm{CD}, \mathrm{DE}, \mathrm{ET}, \mathrm{CF}, \mathrm{BC}, \mathrm{SB}$ ie $\{\mathrm{SACE}\}\{\mathrm{BDFT}\} \quad \mathrm{A} 2,0 \quad 3$
(d) Idea of a directed flow through a system of arcs from $\underline{\underline{S} \text { to } \mathrm{T}} \quad \mathrm{B} 11$ practical

