1. (a) A game in which the gain to one player is equal

B2, 1, $0 \quad 2$ to the loss of the other
(b) If there is a stable solution(s) $a_{i j}$ in a game, the location

B2, 1, $0 \quad 2$ of this stable solution is called the saddle point. It is the point(s) where row maximum = column maximum.
2. Subtract all terms from some $n \geq 35$, e.g. 35

4	11	3	0
19	25	16	13
16	21	15	14
17	20	14	12

Reducing rows then columns

2	4	2	0
4	5	2	0
0	0	0	0
3	1	1	0

1	3	1	0
3	4	1	0
0	0	0	1
2	0	0	0

e.g. matching

$D-A$		A		M	
$H-S$	or	S	or	S	or
K-M		L		A	
$T-L$		M		L	
T		L			

A1 ft

A1 4

Total 88 points
3. (a) (i) Minimum connector using Prim: $A C, C B, C D, C E$

M1 A1
$\{1,3,2,4,5\}$ M1 A1 4

M1 A1
A1 3
(b) Residual minimum connector is $A C, C B, C D$

Length 254
Lower bound $=254+103+115=472$
(c) $472 \leq$ solution ≤ 552

M1
A1
M1 A1 4
B1 ft 1
4. (a)

$$
\left(\begin{array}{ccc}
-4 & -1 & 3 \\
2 & 1 & -2
\end{array}\right) \quad \begin{gathered}
-4 \\
-2
\end{gathered} \quad \leftarrow \max
$$

Col. max

$$
\begin{array}{lcl}
2 & 1 & 3 \\
& \uparrow \\
\min \\
-2 & \neq 1 & \therefore \text { not stable }
\end{array}
$$

(b) Let Emma play R_{1} with probability p

If Freddie plays C_{1}, Emma's winnings are $-4 p+2(1-p)=2-6 p$

$$
\begin{array}{lrr}
C_{2} \text {, Emmas winnings are }-p+1(1-p)=1-2 p & \text { M1 A1 } \\
C_{3} \text {, Emma's winnings are } 3 p-2(1-p)=-2+5 p & \text { A1 } & 3
\end{array}
$$

Need intersection of

$$
\begin{gathered}
2-6 p \text { and }-2+5 p \\
2-6 p=-2+5 p, \\
4=11 p, \\
p=\frac{4}{11}
\end{gathered}
$$

M1

So Emma should play R_{1} with probability $\frac{4}{11}$

$$
R_{2} \text { with probability } \frac{7}{11}
$$

A1 ft 3
The value of the game is $-\frac{2}{11}$ to Emma
(c) Value to Freddie $\frac{2}{11}$, matrix $\left(\begin{array}{cc}4 & -2 \\ 1 & -1 \\ -3 & 2\end{array}\right)$

B1 ft B1, B1 3
5. (a) Idea of many supply and demand points and many B2, 1, $0 \quad 2$ units to be moved. Costs are variable and dependent upon the supply and demand points, need to minimise costs. Practical costs proportional to number of units
(b) Supply $=120$ Demand $=110$ so not balanced B1 1
(c) Adds 0, 0, 0, 10 to column f

	d	e	f
A	45		
B	5	30	
C		30	10

Cost 545
B1 ft
5
(d) $\begin{array}{lll}R_{1}=0 & R_{2}=-1 & R_{3}=-3\end{array}$
$k_{1}=5 \quad k_{2}=7 \quad k_{3}=3$
M1 A1
$A e=3-0-7=-4$
$A f=0-0-3=-3$
$B f=0+1-3=-2$
M1 A1 ft
A1 ft 5
$C d=2+3-5=0$

M1 A1 ft

	d	e	f
A	15	30	
B	35		
C		30	10

	depM1
	A1 ft
Cost 425	A1

6. (a) Stage - Number of weeks to finish B1

State - Show being attended
B1
Action - Next journey to undertake
B1 3
(b) eg

Stage	State	Action	Value
1	$\begin{aligned} & F \\ & G \\ & H \end{aligned}$	F - Home G - Home H- Home	$\begin{aligned} & 500-80=420 * \\ & 700-90=610 * \\ & 600-70=530 * \end{aligned}$
2	D	$\begin{aligned} & D F \\ & D G \\ & D H \end{aligned}$	$\begin{aligned} & 1500-200+420=1720 \\ & 1500-160+610=1950 * \\ & 1500-120+530=1910 \end{aligned}$
	E	$\begin{aligned} & E F \\ & E G \\ & E H \end{aligned}$	$\begin{aligned} & 1300-170+420=1550 \\ & 1300-100+610=1810 \\ & 1300-110+530=1720 \end{aligned} *$
	A	$\begin{aligned} & A D \\ & A E \end{aligned}$	$\begin{aligned} & 900-180+1950=2670 * \\ & 900-150+1810=2560 \end{aligned}$
3	B	$\begin{aligned} & B D \\ & B E \end{aligned}$	$\begin{aligned} & 800-140+1950=2610 * \\ & 800-120+1810=2490 \end{aligned}$
	C	$\begin{aligned} & C D \\ & C E \end{aligned}$	$\begin{aligned} & 1000-200+1950=2750 * \\ & 1000-210+1810=2600 \end{aligned}$
4	Home	Home - A Home - B Home - C	$\begin{aligned} & -70+2670=2600 * \\ & -80+2610=2530 \\ & -150+2750=2600 * \end{aligned}$

M1 A1
(c) Home
 B2 ft 1 ft 0

B1 ft 3
7. (a) $x=9, y=16$

B1 B1 2
(b) Initial flow = 53 - Either finds a flow-augmenting route or demonstrates not enough saturated arcs for a minimum cut

B1 B1 2
(c)

M1A1 2
IFDA - 2
max flow - 64
A1
B1 3
(d) eg
M1 A1 2

(e) Max flow - min cut
Finds a cut $G C, A F, D F, D J, E I, E H$ value 64
A1 2
Note: must not use supersource or supersink arcs.
8. (a) Yes, there are no negative values in the profit row B1 1
(b) $p=63, x=0, y=7, z=0, r=\frac{9}{2}, s=\frac{2}{3}, t=0$
M1, A1, A1, 3
(c) $\frac{63}{7}=9$
M1, A1 2
9.
(a) $\mathrm{C}_{1}=7+14+0+14=35$ B1
$\mathrm{C}_{2}=7+14+5=26$
B1
$\mathrm{C}_{3}=8+9+6+8=31$
B1 3
(b) Either Min cut = Max flow and we have a flow of 26 and a cut of 26 or C2 is through saturated arcs B1 1
(c) Using EJ (capacity 5) e. g - will increase flow by 1- ie increase it to M1 27 since only one more unit can leave E. A1 - BEJL - 1

Using FH (capacity 3) e. g.- will increase flow by 2 - ie increase it to 28 since only two more units can leave F.

- BFHJL-2

Thus choose option 2 add FH capacity 3.
A1 3
10. (a) Maximise

$$
\mathrm{P}=50 x+80 y+60 z
$$

subject to

$$
x+y+2 z \leq 30
$$

$$
x+2 y+z \leq 40
$$

$$
3 x+2 y+z \leq 50
$$

B3, 2, 1,0 4
where

$$
x, y, z \geq 0
$$

(b) Initialising tableau

B1ft M1

bv	x	y	z	r	s	t	value
r	1	1	2	1	0	0	30
s	1	2	1	0	1	0	40
t	3	2	1	0	0	1	50
p	-50	-80	-60	0	0	0	0

chooses correct pivot, divides R_{2} by 2
states correct row operation $R_{1}-R_{2}, R_{3}-2 R_{2}, R_{4}+80 R_{2}, R_{2} \div 2$

A1 ft
A1 4
(c) The solution found after one iteration has a stack of 10 units of black per day

B2, 1, $0 \quad 2$
(d) (i)

bv	x	y	z	r	s	t	value
r	$1 / 2$	0	$3 / 2$	1	$-1 / 2$	0	10
y	$1 / 2$	1	$1 / 2$	0	$1 / 2$	0	20
(given)							
t	2	0	0	0	-1	1	10
p	-10	0	-20	0	40	0	1600

bv	x	y	z	r	s	t	value
z	$1 / 3$	0	1	$2 / 3$	$-1 / 3$	0	$6^{2 / 3}$
y	$1 / 3$	1	0	$-1 / 3$	$2 / 3$	0	$16^{2 / 3}$
t	2	0	0	0	-1	1	10
p	$-3^{1 / 3}$	0	0	$13^{1 / 3}$	$33^{1 / 3}$	0	1733
$1 / 3$							

$$
\begin{aligned}
& \mathrm{R}_{1} \div 3 / 2 \\
& \mathrm{R}_{2}-1 / 2 \mathrm{R}_{1} \\
& \mathrm{R}_{3}-\text { no ch } \\
& \mathrm{R}_{4}+20 \mathrm{R}
\end{aligned}
$$

M1 A1

$$
\mathrm{R}_{3}-\text { no change } \quad \text { M1 A1 } 4
$$

(ii) not optimal, a negative value in profit row

B1ft
(iii) $x=0 \quad y=16 \frac{2}{3} \quad z=62 / 3$
$p=£ 1733.33 \quad r=0, s=0, t=10$
M1 A1ft
A1ft 4

