RECOGNISING ACHIEVEMENT
GCE

Physics A

Mark Scheme for January 2012

OCR（Oxford Cambridge and RSA）is a leading UK awarding body，providing a wide range of qualifications to meet the needs of candidates of all ages and abilities．OCR qualifications include AS／A Levels，Diplomas，GCSEs，OCR Nationals，Functional Skills，Key Skills，Entry Level qualifications，NVQs and vocational qualifications in areas such as IT，business， languages，teaching／training，administration and secretarial skills．

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers．OCR is a not－for－profit organisation；any surplus made is invested back into the establishment to help towards the development of qualifications and support，which keep pace with the changing needs of today＇s society．

This mark scheme is published as an aid to teachers and students，to indicate the requirements of the examination．It shows the basis on which marks were awarded by examiners．It does not indicate the details of the discussions which took place at an examiners＇meeting before marking commenced．

All examiners are instructed that alternative correct answers and unexpected approaches in candidates＇scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated．

Mark schemes should be read in conjunction with the published question papers and the report on the examination．

OCR will not enter into any discussion or correspondence in connection with this mark scheme．
© OCR 2012
Any enquiries about publications should be addressed to：
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone： 08707706622
Facsimile： 01223552610
E－mail：publications＠ocr．org．uk

Annotations available in scoris

Annotation	Meaning
\checkmark	correct response
3	incorrect response
［T：${ }^{\text {a }}$	benefit of the doubt（where professional judgement has been used）
Tirir	benefit of the doubt not given
［－5］	error carried forward
－	information omitted
c¢	contradiction（in cases where candidates contradict themselves in the same response）
\square	follow through
다	error in number of significant figures
［1］	error in the power of 10 in calculation
［13	arithmetic or calculation error
［W0］	not answered question
2	wrong physics
$\square \mathrm{T}$	reading error

Abbreviations，annotations and conventions used in the detailed Mark Scheme．

$=$	alternative and acceptable answers for the same marking point
（1）$=$	separates marking points
allow＝	answers that can be accepted
not $=$	answers which are not worthy of credit
reject	$=$ answers which are not worthy of credit
ignore	$=$ statements which are irrelevant
（ ）＝	words which are not essential to gain credit
	underlined word（or the equivalent）must be present in answer to score a mark
ecf	error carried forward
AW	alternative wording
ora＝	or reverse argument

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme．
B marks：These are awarded as independent marks，which do not depend on other marks．For a B－mark to be scored，the point to which it refers must be seen specifically in the candidate＇s answers．

M marks：\quad These are method marks upon which A－marks（accuracy marks）later depend．For an M－mark to be scored，the point to which it refers must be seen in the candidate＇s answers．If a candidate fails to score a particular M－mark，then none of the dependent A－ marks can be scored．

C marks：These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate，providing subsequent working gives evidence that they must have known it．For example，if an equation carries a C－mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation， then the \mathbf{C}－mark is given．

A marks：These are accuracy or answer marks，which either depend on an M－mark，or allow a C－mark to be scored．

Note about significant figures：

If the data given in a question is to 2 sf，then allow answers to 2 or more significant figures．
If an answer is given to fewer than 2 sf，then penalise once only in the entire paper．
Any exception to this rule will be mentioned in the Additional Guidance．
（Significant figures are rigorously assessed in the practical skills．）

Question			Answers	Marks	Guidance
1	（a）		acceleration＝rate of change of velocity	B1	Allow：$a=\frac{v-u}{t}$ where $v=$ final velocity，$u=$ initial velocity and $t=$ time Allow：＇acceleration＝change in velocity over time＇ Not：＇acceleration＝rate of change of speed＇ Not：mixture of quantity and unit，e．g．＇change of velocity per second＇
	（b）	（i）	$\begin{aligned} & a=\frac{v-u}{t} \quad \text { (Any subject) } \\ & a=\frac{0-6.0}{2400} \\ & a=(-) 2.5 \times 10^{-3}\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow：$a=6.0 / 2400$ Ignore sign
		（ii）	```distance = av speed }\times\mathrm{ time or }\mp@subsup{v}{}{2}=\mp@subsup{u}{}{2}+2a distance = 3.0 * 2400 or 0=6.02 - (2\times2.5 < 10 -3 }\timess distance = 7200(m)```	C1 A1	Possible ecf．from（b）（i） Allow：$v^{2}=u^{2}+2$ as with $v=6.0, u=0$ and $a=0.0025$ Allow：Full credit for correct use of $s=u t+1 / 2 a t^{2}$ Note：Bald $7200(\mathrm{~m})$ scores 2 marks Allow： 1 mark for＇$s=(6 \times 2400)+1 / 2 \times 0.0025 \times 2400^{2}=$ 21600 （m）＇
		（iii）	Correct shape of curve of decreasing gradient starting from 0，0 Graph passes through 40， 7.2	M1 A1	Possible e．c．f．from（b）（ii） Allow the A1 mark if x is between $5-10 \mathrm{~km}$ at 40 min
	（c）	（i）	It has（constant）acceleration／It accelerates（down the ramp）	B1	Allow：Its velocity／speed increases
		（ii）	The time taken by ball to travel between（successive）bells is the same／＇same as first trolley＇／＇there is no change＇（AW） Acceleration is independent of mass／acceleration is the same（for the heavier trolley）（AW）	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	
			Total	11	

Question		Answers	Marks	Guidance
3	（a）	A straight line through the origin	B1	Ignore graph after 0.5 s ．
	（b）	The speed（of the car）is constant	B1	Note：This can only be scored if（a）is correct
	（c）	The distance travelled by the car after the brakes are applied until the car stops	B1	Note：Must have reference to car＇stopping＇to score the mark
	（d）	Mass（of car） （ $112 m v^{2}=F x$ ，hence braking）distance \propto mass Speed／velocity（of car） （ $1 / 2 m v^{2}=F x$ ，hence braking）distance \propto speed 2	M1 A1 M1 A1	Must use tick or cross on Scoris to show if the mark is awarded Allow：weight（of car） Not：＇distance increases with mass＇ Allow：distance $\propto m$ Not：＇distance increases with speed＇ Allow：distance $\propto v^{2}$
	（e）	Increases time（of impact／to slow down）／increases the distance（travelled by the driver） Smaller deceleration／acceleration Force is smaller because $F=m a$ and a is smaller or force is smaller because $F=E_{\mathrm{k}} / x$ and x is bigger or force is smaller because $F=\frac{\Delta p}{\Delta t}$ and Δt is bigger	B1 B1 B1	Must use tick or cross on Scoris to show if the mark is awarded Not：‘slow down acceleration’ Allow：$E_{\mathrm{k}}=F x$ and x is bigger Not：Prevent crashing into windscreen／steering wheel
		Total	10	

Question		Answers	Marks	Guidance （a）	（b）

Question		Answers	Marks	Guidance
5	（a）	$\text { mass }=\frac{590}{9.8(1)}(=60 \mathrm{~kg})$	B1	Allow：weight $=60 \times 9.8(1)$ Allow： $60 \times 9.8(1)=588(\mathrm{~N})$ or $60 \times 9.8(1)=590(\mathrm{~N})$
	（b）	$\begin{aligned} & \text { net force }=60 \times 0.50(=30 \mathrm{~N}) \\ & R=590+30 \\ & R=620(\mathrm{~N}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow： 1 mark for＇590－30＝560（N）’
	（c）	resultant force $=0 /$＇$a=0$ and $F=m a=0 ’$	B1	Not：Acceleration＝ 0 or＇forces are balanced＇
	（d）	weight $>R$（for deceleration）$/ R=590-60 \mathrm{a} / R=m g-m a$ Hence R decreases	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Allow：W or $m g$ for＇weight＇
		Total	6	

Question			Answers	Marks	Guidance
6	（a）		The extension \propto（applied）force（on spring） （as long as the elastic limit is not exceeded）	B1	
	（b）	（i）	Gradient／slope（of line／graph）／force divided by extension \mathscr{O} The term gradient／slope／divided to be included and spelled correctly to gain the B1 mark	B1	Must use tick or cross on Scoris to show if the mark is awarded
		（ii）	Area（under the graph／line）	B1	Allow： $1 / 2 \times$ force \times extension Allow： $1 / 2 \times$ force constant \times extension ${ }^{2}$ if（b）（i）is correct
	（c）		The extension（for the combination）is doubled Force（for each spring）is the same／constant （force constant $=$ force／extension，hence it is halved）	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	Allow： 1 mark for＇F is the same，x is doubled＇ Allow： 2 marks for＇the springs need half the force to give the same（total）extension＇
	（d）	（i）	Young modulus＝stress／strain As long as the elastic limit is not exceeded／in the linear region of stress against strain graph／Hooke＇s law is obeyed	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	
		(ii) 1	$\begin{aligned} & \text { stress }=\frac{4.2}{0.20 \times 10^{-6}} \\ & \text { stress }=2.1 \times 10^{7}(\mathrm{~Pa}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow： 1 mark for $2.1 \times 10^{\mathrm{n}}, \mathrm{n} \neq 7$
		（ii）	$\begin{aligned} & \text { Young modulus }=\frac{2.1 \times 10^{7}}{0.015} \\ & \text { Young modulus }=1.4 \times 10^{9}(\mathrm{~Pa}) \end{aligned}$	C1 A1	Possible ecf from（ii）1
		$\begin{gathered} \text { (ii) } \\ 3 \end{gathered}$	$\begin{aligned} & \text { energy }=\frac{1}{2} F x \\ & x=0.70 \times 0.015 \quad l x=0.0105(\mathrm{~m}) \\ & \text { energy }=\frac{1}{2} \times 4.2 \times(0.70 \times 0.015) \\ & \text { energy }=2.2 \times 10^{-2}(\mathrm{~J}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	
			Total	14	

OCR（Oxford Cambridge and RSA Examinations）
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone： 01223553998
Facsimile： 01223552627
Email：general．qualifications＠ocr．org．uk

www．ocr．org．uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England
Registered Office； 1 Hills Road，Cambridge，CB1 2EU
PARTCFTHE
CAMBRDGE ASSESSMENT
GMOMP
Registered Company Number： 3484466
OCR is an exempt Charity
OCR（Oxford Cambridge and RSA Examinations）
Head office
Telephone： 01223552552
Facsimile： 01223552553

