Solutions

1. (a)

	$A(\mathrm{I})$	$A(\mathrm{II})$
$B(\mathrm{I})$	3	-4
$B(\mathrm{II})$	-2	1
$B(\mathrm{III})$	-5	4

B2, 1, $0 \quad 2$
(b) e.g. matrix becomes

	$A(\mathrm{I})$	$A(\mathrm{II})$
$B(\mathrm{I})$	9	2
$B(\mathrm{II})$	4	7
$B(\mathrm{III})$	1	10

Defines variables (-including non-zero constants)

M1

B1
e.g. \quad maximise $P=V$
subject to $\quad v-9 q_{1}-4 q_{2}-q_{3}+r=0$
$v-2 q_{1}-7 q_{2}-10 q_{3}+s=0$
$q_{1}+q_{2}+q_{3}+t=1$
OR
e.g. minimise $P=x_{1}+x_{2}+x_{3}$ where $x_{\mathrm{i}}=\frac{q_{\mathrm{i}}}{v}$
subject to $9 x_{1}+4 x_{2}-x_{3}+r=1$

$$
2 x_{1}-7 x_{2}-10 x_{3}+s=1
$$

A2 ft, $1 \mathrm{ft}, 0 \quad 4$
OR
e.g. maximise $P=V$
$v-8 q_{1}-3 q_{2}+R=0$
$v-8 q_{1}-3 q_{2}+S=0$
2. (a) In the practical TSP each vertex must be visited at least once

B1
B1 2
(b) $A B, D F, D E,($ reject $E F),\left\{\begin{array}{l}F G \\ A C\end{array}\right\} E H\left\{\begin{array}{c}D C \\ \text { or } \\ B E\end{array}\right\}$

B1 3
(c) Initial upper bound $=2 \times 85=170 \mathrm{~km}$

M1 A1 2
(d) e.g. when $C D$ is part of the tree
use $G H$ (saving 26) and $B D$ (saving 19) giving new u. b.
of 125 km
Tour A B D E H G F D C A
(or e.g. when $B E$ is part of the tree
use $C G$ (saving 40) giving new upper bound of 130 km ;
Tour ABEHEDFGCA)
3. (a) (i) Either rows then columns giving

	I	II	III	IV	
C	0	22	16	4	
J	1	20	24	0	then
N	1	18	18	0	
S	1	23	26	0	

	I	II	III	IV		
C	0	4	0	4		
J	1	2	8	0	M1, A1, A1	3
N	1	0	2	0		
S	1	5	10	0		

3 lines only needed $\left.\begin{array}{l}\square \\ \text { (or } \\ \square\end{array}\right)$ least element 1 so

	I	II	III	IV			I	II	III	IV	M1, A1, A1	
C	0	4	0	5		C	0	5	0	5		
J	0	1	7	0	or	J	0	2	7	0		
N	1	0	2	1		N	0	0	1	0		
S	0	4	9	0		S	0	5	9	0		

Alternative
(a) (i) or columns then rows giving

	I	II	III	IV
C	1	2	0	6
J	2	0	8	2
N	4	0	4	4
S	0	1	8	0

(then no change)
M1, A1

3 lines only needed \square and either row 1 or column 3
if row 1: least uncovered 2

	I	II	III	IV
C	1	4	0	6
J	0	0	6	0
N	2	0	2	2
S	0	3	8	0

if column 3: least uncovered 1

	I	II	III	IV
C	0	2	0	5
J	1	0	8	1
N	3	0	4	3
S	0	2	9	0

Then least uncovered 1
M1 A1 M1 A1 6

	I	II	III	IV
C	0	3	0	5
J	0	0	7	0
N	2	0	3	2
S	0	3	9	0

(ii) $\quad C$ - III, J - I or IV, N - II, S - IV or I 83 minutes $\therefore 11.23$ a.m.

M1 A1
M1 A1 4
(b) Subtracting all entries from some $n \geq 36$ (stated)
e.g. subtractions from 36

	I	II	III	IV
C	24	2	8	20
J	23	4	0	24
N	21	4	4	22
S	25	3	0	26

4. (a) Player A : row minimums are $-1,0,-3$ so maximin choice is play II M1 A1 Player B : column maximums are 2,3 , 3 so minimax choice is play I M1 A1 4
(b) Since A 's maximin $(0) \neq B$'s minimax (2) there is no stable solution B1 1
(c) For player A row II dominates row III, so A will now play III

B2, 1, $0 \quad 2$
(d) Let A play I with probability p and II with probability $(1-p)$

If B plays I, A 's expected winnings are $2 p+(1-p)=1+p$
If B plays II, A 's expected winnings are $-p+3(1-p)=3-4 p \quad$ M1, A2, 1, $0 \quad 3$
If B plays III, A 's expected winnings are $3 p$

$3-4 p=3 p \Rightarrow p=\frac{3}{7}$
A should play I with probability $\frac{3}{7}$
A should play II with probability $\frac{4}{7}$
and never play III
The value of the game is $\frac{9}{7}$ to A
A1 ft 4
5. (a) e.g.

	D	E	F				D	E	F
A	6				A	6	0		
B	0	5			or	B		5	
C		4	4			C		4	4

M1 A1

cost £470
A1 3
(b) $\quad S_{A}=0, S_{B}=0, S_{C}=-10$
$S_{A}=0, S_{B}=-10, S_{C}=-20$
$D_{D}=20, D_{E}=30, D_{F}=40$
$D_{D}=20, D_{E}=40, D_{F}=50$
$I_{A E}=40-30=10$
$I_{A F}=10-50=-40$
$I_{A F}=10-40=-30$
$I_{B D}=20-10=10$
$I_{B F}=40-40=0$
$I_{B F}=40-40=0$
$I_{C D}=10-10=0$
$I_{C D}=10-0=10 \quad$ M1 A1 4
Choose $A F$ as entering route
$A F(+) \rightarrow C F(-) \rightarrow C E(+) \rightarrow B E(-) \quad A F(+) \rightarrow C F(-) \rightarrow C E(+) \rightarrow A E(-)$
$\rightarrow B D(+) \rightarrow A D(-)$
Exiting route CF $\theta=4$
Exiting route $A E \theta=0$
M1 A1 ft

	D	E	F
A	2		4
B	4	1	
C		8	

	D	E	F
A	6		0
B		5	
C		4	4

A1 3
$S_{A}=0, S_{B}=0, S_{C}=-10$
$S_{A}=0, S_{B}=30, S_{C}=20$
$D_{D}=20, D_{E}=30, D_{F}=10$
$D_{D}=20, D_{E}=0, D_{F}=10$
$I_{A E}=10, I_{B F}=30$,
$I_{C D}=0, I_{C F}=30$
\therefore optimal, cost $£ 350$
$I_{A E}=40, I_{B D}=-30$,
$I_{B F}=20, I_{C D}=-30 \quad$ M1 A1 A1
$C D(+) \rightarrow A D(-) \rightarrow A F(+) \rightarrow C F(-)$
$\theta=4$

	D	E	F
A	2		4
B		5	
C	4	4	

$$
\begin{aligned}
& S_{A}=0, S_{B}=0, S_{C}=-10 \\
& D_{D}=20, D_{E}=30, D_{F}=10 \\
& I_{A E}=10, I_{B D}=0, I_{B F}=30, I_{C F}=30
\end{aligned}
$$

\therefore optimal, cost $£ 350$
6. (a) Total cost $=2 \times 40+350+200=£ 630$

M1 A1 2
(b)

Stage	Demand	State	Action	Destination	Value
(2) Oct	(5)	(1)	(4)	(0)	$(590+200=790)$
		(2)	(3) (4)	(0) (1)	$280+200=480$
		(3)	(2)	0	$320+240=870$
			3	1	$320+240=520$
			4	2	$670+80=750$
3	3	0	4	1	$550+790=1340$
Sept					
		1	3	1	$240+790=1030$
			4	2	$590+480=1070$
4	3	0	3	0	$200+1340=1540$
Aug			4	1	$550+1030=1580$

M1 A1

M1 A1 4

M1 A1

M1 A1 ft

M1 A1 ft 6

Month	August	September	October	November
Make	3	4	4	2

cost $=£ 1540$
M1 A1

A1 ft 3
(c) Profit per cycle $=13 \times 1400$
= 18200
Cost of Kim's time $=£ 2000$
Cost of production $=£ 1540$
\therefore Total profit $=18200-3540$
$=£ 14660$
7. (a) Adds S and T and arcs
$S S_{1} \geq 45, S S_{2} \geq 35, T_{1} T \geq 24, T_{2} T \geq 58$
(b) Using conservation of flow through vertices $x=16$ and $y=7$

A1 2
(c) $C_{1}=86, C_{2}=81$

B1 B1 2
B1 B2 3
(d)

$\begin{array}{lllrl} & & \text { M1 A1 } \\ & & \text { dM1 } & \\ \text { e.g. } & \text { S } S_{1} A D E H T_{2} T & -2 & \text { A1 } & \\ & S S_{1} A C F E H T_{1} T & -3 & \text { A1 } & \\ & S S_{2} B G D T_{2} T & -2 & \text { A1 } & 6\end{array}$
(e) e.g.:

Flow 75
M1 A1
A1 3
(f) Max flow - min cut theorem cut through
$C F, C E, A D, B D, B G$ (value 75)
dM1
A1 2
8. (a) $2 x+3 y+4 z \leq 8$
$P=8 x+9 y+5 z$
(b)

\downarrow						
b.v	x	y	z	r	s	Value
r	2	3	4	1	0	8
s	3	3	1	0	1	10
P	-8	-9	-5	0	0	0

\downarrow						
b.v	x	y	z	r	s	Value
y	$\frac{2}{3}$	1	$\frac{4}{3}$	$\frac{1}{3}$	0	$\overline{3}$

b.v	x	y	z	r	s	Value	$R_{1}-\frac{2}{3} R_{2}$	
y	0	1	$\frac{10}{3}$	1	$-\frac{2}{3}$	$\frac{4}{3}$		A1
x	1	0	-3	-1	1	2		M1
P	0	0	1	1	2	28	$R_{3}+2 R_{2}$	A1

(c) $\quad P=28$

$$
\begin{aligned}
& x=2, y=\frac{4}{3} \\
& z=0, r=0, s=0
\end{aligned}
$$

M1
A1
A1 3

