1 （i） $\mathrm{f}(2)=8+4 a-2 a-14$
M1＊
$2 a-6=0$
$a=3$

（ii） | $f(-1)$ | $=-1+3+3-14$ |
| ---: | :--- |
| | $=-9$ |

M1d＊Equate attempt at $f(2)$ ，or attempt at remainder，to 0 and attempt to solve
A1 3 Obtain $a=3$
M1 \quad Attempt $\mathrm{f}(-1)$ or equiv，including inspection／long division／coefficient matching

A1 ft 2 Obtain－9（or $2 a-15$ ，following their a ）

5

2 （i）\quad area $\approx \frac{1}{2} \times 3 \times(\sqrt[3]{8}+2(\sqrt[3]{11}+\sqrt[3]{14})+\sqrt[3]{17})$
B1

M1 Use correct trapezium rule，any h ，to find area between $x=1$ and $x=10$
≈ 20.8
M1 Correct h（soi）for their y－values－must be at equal intervals

A1 $\quad 4 \quad$ Obtain 20.8 （allow 20．7）
（ii）use more strips／narrower strips
B1 $1 \quad$ Any mention of increasing n or decreasing h

5
3 （i）$\quad(1+1 / 2 x)^{10}=1+5 x+11.25 x^{2}+15 x^{3}$
B1

M1 Attempt at least the third（or fourth）term of the binomial expansion，including coeffs

A1 Obtain $11.25 x^{2}$
A1 Obtain $15 x^{3}$
（ii）coeff of $x^{3}=(3 \times 15)+(4 \times 11.25)+(2 \times 5)$

$$
=100
$$

A1 ft Obtain correct（unsimplified）terms（not necessarily summed）－either coefficients or still with powers of x involved

A1 3 Obtain 100

4 （i）$u_{1}=6, u_{2}=11, u_{3}=16$
B1 1 State 6，11， 16
（ii）$S_{40}=40 / 2(2 \times 6+39 \times 5)$
M1 Show intention to sum the first 40 terms of a sequence

M1 Attempt sum of their AP from（i），with n $=40, a=$ their u_{1} and $d=$ their $u_{2}-u_{1}$

A1 3 Obtain 4140
（iii）$\quad w_{3}=56$
$5 p+1=56$ or $6+(p-1) \times 5=56$
$p=11$

B1 State or imply $w_{3}=56$
M1 Attempt to solve $u_{p}=k$
A1 3 Obtain $p=11$
7

$\mathbf{5}$（i）$\frac{\sin \theta}{8}=\frac{\sin 65}{11}$	M1	Attempt use of correct sine rule	
$\theta=41.2^{\circ}$	A1	2	Obtain 41．2 ${ }^{\circ}$ ，or better

（ii）a $180-(2 \times 65)=50^{\circ}$ or $65 \times \pi / 180=1.134 \quad$ M1 Use conversion factor of $\pi / 180$ $50 \times \pi / 180=0.873$ A．G．$\quad \pi-(2 \times 1.134)=0.873$

A1 2 Show 0.873 radians convincingly（AG）

（ii） b	area sector $=1 / 2 \times 8^{2} \times 0.873=27.9$	M1		Attempt area of sector，using（1／2）$r^{2} \theta$
	$\begin{aligned} \text { area segment } & =27.9-24.5 \\ & =3.41\end{aligned}$	M1		Attempt area of triangle using（1／2）$r^{2} \sin \theta$
		M1		Subtract area of triangle from area of sector
		A1	4	Obtain 3．41or 3.42
			8	

6 a \quad	$\int_{3}^{5}\left(x^{2}+4 x\right) d x=\left[\frac{1}{3} x^{3}+2 x^{2}\right]_{3}^{5}$
	$=(125 / 3+50)-(9+18)$
$=$	$64 \frac{2}{3} 3$

M1 Attempt integration

A1 Obtain $\frac{1}{3} x^{3}+2 x^{2}$
M1 Use limits $x=3,5-$ correct order \＆ subtraction

A1 $\quad 4$ Obtain $64^{2} / 3$ or any exact equiv
b $\quad \int(2-6 \sqrt{y}) \mathrm{d} y=2 y-4 y^{\frac{3}{2}}+c$
B1 State $2 y$
M1 Obtain $\mathrm{ky}^{\frac{3}{2}}$
A1 3 Obtain $-4 y^{\frac{3}{2}}$（condone absence of $+c$ ）

c \quad| $\int_{1}^{\infty} 8 x^{-3} \mathrm{~d} x$ | $=\left[\frac{-4}{x^{2}}\right]_{1}^{\infty}$ |
| ---: | :--- |
| | $=(0)-(-4)$ |
| | $=4$ |

B1 State or imply $\frac{1}{x^{3}}=x^{-3}$
M1 Attempt integration of $k x^{n}$
A1 Obtain correct $-4 x^{-2}(+c)$

A1 ft 4 Obtain 4 （or $-k$ following their $k x^{-2}$ ）
11

$$
7 \text { (i) } \begin{aligned}
\frac{\sin ^{2} x-\cos ^{2} x}{1-\sin ^{2} x} & =\frac{\sin ^{2} x-\cos ^{2} x}{\cos ^{2} x} \\
& =\frac{\sin ^{2} x}{\cos ^{2} x}-\frac{\cos ^{2} x}{\cos ^{2} x}
\end{aligned}
$$

Use either $\sin ^{2} x+\cos ^{2} x=1$ ，or $\tan x=\sin x / \cos x$ convincingly．

$$
=\tan ^{2} x-1 \quad \text { A1 } \quad 2 \quad \text { Use other identity to obtain given answer }
$$

B1

M1
3）$=0$
$\tan x=2, \tan x=-3$
$x=63.4^{\circ}, 243^{\circ} \quad x=108^{\circ}, 288^{\circ}$

State correct equation
Attempt to solve three term quadratic in $\tan x$

Obtain 2 and -3 as roots of their quadratic

M1

A1ft
Obtain at least 2 correct roots
A1
Attempt to solve $\tan x=k$（at least one root）

Obtain all 4 correct roots

8

8 a $\quad \log 5^{3 w-1}=\log 4^{250}$
$(3 w-1) \log 5=250 \log 4$
$3 w-1=\frac{250 \log 4}{\log 5}$
$w=72.1$

M1＊Introduce logarithms throughout
M1＊Use $\log a^{b}=b \log a$ at least once
A1 Obtain $(3 w-1) \log 5=250 \log 4$ or equiv

M1d＊Attempt solution of linear equation

A1 Obtain 72．1，or better 5
b $\quad \log _{x} \frac{5 y+1}{3}=4$
$\frac{5 y+1}{3}=x^{4}$
$5 y+1=3 x^{4}$
$y=\frac{3 x^{4}-1}{5}$

M1
M1
M1

A1 4 Obtain $y=\frac{3 x^{4}-1}{5}$ ，or equiv

9

9 （i）$a r=a+d, a r^{3}=a+2 d$
$2 a r-a r^{3}=a$
$a r^{3}-2 a r+a=0$
$r^{3}-2 r+1=0 \quad$ A．G．

M1 Attempt to link terms of AP and GP， implicitly or explicitly．

Attempt to eliminate d ，implicitly or explicitly，to show given equation．

A1 3 Show $r^{3}-2 r+1=0$ convincingly
（ii） $\mathrm{f}(r)=(r-1)\left(r^{2}+r-1\right)$
$r=\frac{-1 \pm \sqrt{5}}{2}$
Hence $r=\frac{-1+\sqrt{5}}{2}$
B1 Identify $(r-1)$ as factor or $r=1$ as root
M1＊Attempt to find quadratic factor

A1 Obtain $r^{2}+r-1$
M1d＊Attempt to solve quadratic
A1 $5 \quad$ Obtain $r=\frac{-1+\sqrt{5}}{2}$ only
（iii）
$\frac{a}{1-r}=3+\sqrt{5}$
$a=\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)(3+\sqrt{5})$
$a=9 / 2-\frac{5}{2}$
$a=2$

M1
Equate S_{∞} to $3+\sqrt{5}$

Obtain $\frac{a}{1-\left(\frac{-1+\sqrt{5}}{2}\right)}=3+\sqrt{5}$
Attempt to find a

A1
Obtain $a=2$

