PH2

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& Marking details \& Marks Available \\
\hline 1 \& （a） \& \begin{tabular}{l}
（i） \\
（ii） \\
（i） \\
（ii） \\
（iii）
\end{tabular} \& \begin{tabular}{l}
Longitudinal waves：Directions of［particle or molecule or air］ oscillations and direction of travel of wave［or energy］［NB not particles travelling］（1）are parallel［or parallel／antiparallel or the same］（1）［Independent marks］ \\
Wavelength：［Shortest］distance［along the direction of propagation］ between air layers［or particles or molecules or points］oscillating in phase \((\checkmark)\) or distance between［the centre of successive］ compressions［or rarefactions］．［NB not＇peaks＇and＇troughs＇］ \\
Interference between［or superposition of］［progressive］waves（1） travelling in opposite directions．（1）［Not＇constructive＇or ＇destructive＇interference only］ \\
N．B．Working must be shown．\(\lambda=0.44 \mathrm{~m}\)（1） \\
\(v=f \lambda\) correctly applied（1）［or \(v=\lambda / T\) correctly applied \(]\) \\
\(v=330 \mathrm{~m} \mathrm{~s}^{-1}((\) unit）\()\)（1）［Correct answer only \(\rightarrow 1\) mark］ \\
［No ecf unless wrong answer commented upon！］ \\
\(\frac{\lambda}{2}=3.3 \mathrm{~m}\) or \(\lambda=6.6 \mathrm{~m}\)（1）．So nodes must be further apart than 2 m \\
［or equiv］（1）［ecf from incorrect \(v\) ］
\end{tabular} \& \begin{tabular}{l}
2 \\
1 \\
2 \\
3 \\
2 \\
［10］
\end{tabular} \\
\hline 2 \& （a）
（b）

（c） \& \begin{tabular}{l}
（i）

（ii）

（i）

（ii）

（iii）

 \&

$$
\left.v_{\text {air }}>v_{\text {glass }}(1), f_{\text {air }}=f_{\text {glass }} \text { and } \lambda_{\text {air }}>\lambda_{\text {glass }} .1\right)
$$

Cycles［or oscillation］can＇t appear or disappear［at boundary］or equiv．／frequency determined by the source［not just f is constant］

$$
\left.[1.00] \sin 40^{\circ}=1.52 \sin \phi \text { [where } \phi=\text { angle of refraction }\right] \text { (1) }
$$

$$
\phi=25^{\circ}(1) ; \theta=90^{\circ}-25^{\circ}(1)=\left[65^{\circ}\right]
$$

$$
\left.\sin c=\frac{1}{1.52} \text { [or equiv }\right] \quad \text { or: }
$$

$\sin ^{-1}\left(1.52 \sin 65^{\circ}\right)$ gives＂error＂

$$
c=41^{\circ}(1)
$$

$65^{\circ}>41^{\circ}$ or remark（1）［free

（1），so refraction not possible（1） standing］

I．Diagram：Reasonable path drawn［no gross departure from law of reflection］with emergent ray in correct quadrant（1）

II． 2 sensible parallel paths inside block labelled（1）

Emergent ray labelled as parallel to incident ray．（1）

Any $2 \times$（1）from：

－minimises multimode dispersion［or equiv］(\checkmark)

－cuts down range of path lengths (\checkmark)

－less pulse broadening or less likelihood of overlapping or more rapid data［allow：smearing and jumbling］sequence possible (\checkmark)［not interfere or distorted］

 \&

2

1

3

2

1

2

2

［13］
\end{tabular}

\hline
\end{tabular}

Question			Marking details	Marks Available
3	（a） （b） （c）	（i） （ii） （iii） （i） （ii）	Electrons are emitted［from tin］（1）． Electrons are negatively charged［or plate originally neutral］or electrons knocked out by photons（1） Plate left with a positive charge（1） Work function：［Minimum］energy［or work］needed for an electron to escape［from metal surface］ $h f_{\text {min }}=\phi$［or by impl．］or $0=6.63 \times 10^{-34} f_{\text {min }}-7.1 \times 10^{-19}(1)$ $f_{\text {min }}=1.07 \times 10^{15} \mathrm{~Hz}(1)$ $1.5 \times 10^{-19}=h f-7.1 \times 10^{-19}$［or equiv．or by impl．］（1） $f=1.3 \times 10^{15} \mathrm{~Hz}(1)$ number per second $=\frac{0.64 \times 10^{-6}\left[\mathrm{C} \mathrm{s}^{-1}\right]}{1.6 \times 10^{-19}[\mathrm{C}]}$ Number of photons per second $=4.0 \times 10^{12} \times 1200$ Multiplication by 1200 at any stage［or by impl．］（1） Photon energy $=8.6 \times 10^{-19} \mathrm{~J}$［or by impl．］（1） UV energy per second $=4.1 \mathrm{~m}(1) \mathrm{W}(1)\left[4.1 \times 10^{-3} \mathrm{~J} \mathrm{~s}^{-1} \checkmark \checkmark\right]$	3 1 2 2 1 4 ［13］
4	（a）	（i） （ii） （iii） （iv）	Ground state to level T labelled I or pumping（1） Level U to level L labelled II or stimulated emission（1） $E_{\text {phot }}=\frac{h c}{\lambda}\left[\right.$ or $E_{\text {phot }}=h f$ and $\left.f=\frac{c}{\lambda}\right][$ or by impl．$](1)$ $E_{\text {phot }}=1.9[0] \times 10^{-19} \mathrm{~J}(1)$ Energy of level U $=2.2 \times 10^{-19} \mathrm{~J}$（1） I．［Stimulated emission is triggered by an incident］photon（1） with energy $1.9 \times 10^{-19} \mathrm{~J}$［ecf but not $\left.2.2 \times 10^{-19}\right]$ or equal to the difference between levels U and L（1）［no ecf from incorrect identification of transition in（a）（i）］ II．Photon emitted together with the original photon［accept：there are now 2 photons where there was previously 1 ；also accept correct answer given in I．］ III．Stimulated photon and incident photon in phase． Promotes population inversion［between levels U and L ］（1） Either less pumping needed，or population inversion needed so that stimulated emission predominates over absorption（1） Less energy input needed for a given［light］energy output（1）［or more efficient］	2 3 2 1 1 2 1 ［12］

Question			Marking details	Marks Available
5	（a）	（i） （ii） （iii）	Diffraction ［Slit width much］greater than the wavelength（1） ［Angular］spread［of central maximum］is small．（1） ［Width of］spread decreases（1）［accept：less diffraction］ Peak intensity increases（1）［or intensity increases because more light is let through］．	2 2
	（b）	（i） （ii）	$1.25 \mathrm{~mm}$ Use of $\lambda=\frac{a y}{D}$ with symbols correctly interpreted（1）	1
		（iii）	$\lambda=625 \mathrm{~nm}[\mathrm{ecf}$ on $y]$（1） When path difference is a whole number of wavelengths［not just： path difference $=0$ ］(1) ，waves from the slits arrive［or equiv．］in phase（1）and interfere constructively（1） Less light diffracted at greater angles／intensity envelope the same as the diffraction graph．	2 3 1
	（c）		Any $2 \times(1)$ from： －Light from laser may be brighter \checkmark［not just collimated］ －Light from laser coherent／no need for single slit／light source need not be distant \checkmark －light［more nearly］monochromatic \checkmark	2
				［14］

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& Marking details \& Marks Available \\
\hline 6 \& \begin{tabular}{l}
（a） \\
（b） \\
（c）
\end{tabular} \& \begin{tabular}{l}
（i） \\
（ii） \\
（i） \\
（ii） \\
（i） \\
（ii）
\end{tabular} \& \begin{tabular}{l}
Quark－antiquark combination［or equiv．］ \\
Only ud combination［in the \(1^{\text {st }}\) generation］gives a charge of +e ［or \(\frac{2}{3}+\frac{1}{3}=1\) ］ \\
I．\(\quad[u \bar{d}+u u d+u d d \rightarrow u u d+u u d]\) u numbers：LHS \(=4\) ；RHS \(=4\) ，so conserved \\
II．d numbers： LHS \(=2\) ；RHS \(=2\) ，so conserved \\
Strong force（1） \\
Any \(1 \times(1)\) of： \\
－＇high energies’ suggests strong \(\checkmark\) \\
－separate conservation of \(u\) and \(d \checkmark\) \\
－no neutrino／lepton involvement \(\checkmark\) \\
－quark regrouping／only quarks involved \(\checkmark\) \\
Any intelligible method［e．g．baryon and charge conservation or u and \(d\) numbers conservation，or quark counting to give \(9 u+9 d\) in \(X\) ， or comparison with equation in（b）noting that \(\pi^{+}+\mathrm{n} \rightarrow \mathrm{p}\) ］（1）［or by impl．］ \(A=6\) and \(Z=3\)（1） \\
Proton number／atomic number［accept：chemical element］
\end{tabular} \& \begin{tabular}{l}
1 \\
1 \\
1 \\
1 \\
2 \\
2
1 \\
［11］
\end{tabular} \\
\hline 7 \& \begin{tabular}{l}
（a） \\
（b） \\
（c）
\end{tabular} \& （i）
（ii） \& \begin{tabular}{l}
\(T=\frac{W}{260 \times 10^{-9}}(1-\) trans \()\)［or by impl．］［allow this mark even if \(10^{-9}\) omitted］
\[
=11 \times 10^{3} \mathrm{~K}(1)((\text { unit }))
\] \\
Black body［accept：non－reflecting surface／radiates equally in all directions］ \\
Radius is \(\times 70\) so area is \(\times 70^{2}\)［or equiv，or by impl．］（1） \\
Temperature is \(\times 2\) ，so \(T^{4}\) is \(2^{4}\)［or equiv．or by impl．］（1） \\
［So］Power is \(\times 80000\)（1） \\
Absorption［by atoms in the stellar atmosphere or in interstellar gas］ of specific wavelengths from the star＇s continuous spectrum［or from star＇s radiation／star＇s light］（1） \\
Any \(2 \times(1)\) from： \\
－．．．．．because photons of specific energy abso rbed \(\checkmark\) \\
－Photon energies correspond to transitions between［atoms＇］ energy levels \(\checkmark\) \\
－Absorbed radiation re－emitted but in all directions \(\checkmark\)
\end{tabular} \& 2
1

3

3
［9］

\hline
\end{tabular}

