4722 Core Mathematics 2

1
（i）$\quad 2\left(1-\cos ^{2} x\right)=5 \cos x-1$ $2 \cos ^{2} x+5 \cos x-3=0$ A．G．

M1 Use $\sin ^{2} x=1-\cos ^{2} x$
A1 2 Show given equation correctly
（ii）$(2 \cos x-1)(\cos x+3)=0$
$\cos x=1 / 2$
$x=60^{\circ}$
$x=300^{\circ}$

M1

M1
A1 Obtain 60° or $\frac{\pi}{3}$ or 1.05 rad
A1 $\sqrt{ } 4$ Obtain 300° only（or 360°－their x ）and no extra in range
SR answer only is B1 B1

2 （i） $\int(6 x-4) \mathrm{d} x=3 x^{2}-4 x+c$
M1＊Attempt integration（inc．in power for at least one term）

A1 Obtain $3 x^{2}-4 x$（or unsimplified equiv）， with or without $+c$
$y=3 x^{2}-4 x+c \Rightarrow 5=12-8+c$
M1dep＊Use $(2,5)$ to find c

$$
\Rightarrow c=1
$$

Hence $y=3 x^{2}-4 x+1$
（ii） $3 p^{2}-4 p+1=5$
$3 p^{2}-4 p-4=0$
$(p-2)(3 p+2)=0$
$p=-2 / 3$

M1＊Equate their y（from integration attempt） to 5
M1dep＊Attempt to solve three term quadratic

A1 3 Obtain $p=-2 / 3$（allow any variable）from correct working；condone $p=2$ still present， but A0 if extra incorrect solution

7

3
（i）$(2-x)^{7}=128-448 x+672 x^{2}-560 x^{3}$
M1 Attempt（at least）two relevant terms－ product of binomial coeff， 2 and x （or expansion attempt that considers all 7 brackets）
A1 Obtain $128-448 x$
A1 Obtain 672 x^{2}
A1 4 Obtain $-560 x^{3}$
（ii）$-560 \times(1 / 4)^{3}=-35 / 4$
M1
Attempt to use coeff of x^{3} from（i），with clear intention to cube $1 / 4$
A1 2 Obtain ${ }^{-35} / 4\left(w^{6}\right)$ ，
（allow ${ }^{35} / 4$ from $+560 x^{3}$ in（i））
$4 \quad$（i）

$$
\begin{array}{r}
\int_{3}^{5} \log _{10}(2+x) \mathrm{d} x \approx \frac{1}{2} \times \frac{1}{2} \times(\log 5+2 \log 5.5+ \\
2 \log 6+2 \log 6.5+\log 7) \tag{M1}
\end{array}
$$

≈ 1.55

M1 Correct h（soi）for their y－values
M1 Attempt y－coords for at least 4 of the correct $5 x$－coords only
Use correct trapezium rule，any h ，to find area between $x=3$ and $x=5$

A1 4 Obtain 1.55
（ii） $\int_{3}^{5} \log _{10}(2+x)^{\frac{1}{2}} \mathrm{~d} x=\frac{1}{2} \int_{3}^{5} \log _{10}(2+x) \mathrm{d} x$

$$
\approx 1 / 2 \times 1.55
$$

B1 $\sqrt{ }$ Divide by 2 ，or equiv，at any stage to obtain 0.78 or 0.77 ，
following their answer to（i）

$$
\approx 0.78
$$

B1 2 Explicitly use $\log \sqrt{ } a=1 / 2 \log a$ on a single term

M1 Attempt subtraction（correct order）at any point
M1 Attempt integration－inc．in power for at least one term
A1 Obtain $\pm\left(-\frac{1}{3} x^{3}+10 x\right)$ or $11 x$ and $\frac{1}{3} x^{3}+x$
M1 Obtain remaining term of form $k x^{-1}$
A1 Obtain $\pm 9 x^{-1}$ or any unsimplified equiv
M1 Use limits $x=1,3$－correct order \＆ subtraction
A1 7 Obtain $5 \frac{1}{3}$ ，or exact equiv

6

（i） $\mathrm{f}(-3)=0 \Rightarrow-54+9 a-3 b+15=0$	M1	Attempt $\mathrm{f}(-3)$ and equate to 0 ，or equiv method
$\mathrm{f}(2)=35 \Rightarrow 16+4 a+2 b+15=35$	A1	Obtain $3 a-b=13$, or unsimplified equiv
$2 a+b=2$	M1	Attempt $\mathrm{f}(2)$ and equate to 35 ，or equiv method
Obtain $2 a+b=2$ ，or unsimplified equiv		

（ii） $\mathrm{f}(x)=(x+3)\left(2 x^{2}-3 x+5\right)$
ie quotient is $\left(2 x^{2}-3 x+5\right)$

M1 Attempt complete division by $(x+3)$ ，or equiv
A1 Obtain $2 x^{2}-3 x+c$ or $2 x^{2}+b x+5$ ，from correct $\mathrm{f}(x)$
A1 3 Obtain $2 x^{2}-3 x+5$（state or imply as quotient）
（i） $13^{2}=10^{2}+14^{2}-2 \times 10 \times 14 \times \cos \theta$
$\cos \theta=0.4536$
$\theta=1.10$ A．G．
（ii） $\operatorname{arc} E F=4 \times 1.10=4.4$

$$
\text { perimeter }=4.4+10+13+6
$$

$$
=33.4 \mathrm{~cm}
$$

M1

A1 2 Obtain 1.10 radians（allow 1.1 radians） SR B1 only for verification of 1．10，unless complete method

B1 State or imply $E F=4.4 \mathrm{~cm}$ （allow 4×1.10 ）
M1 Attempt perimeter of region－sum of arc and three sides with attempt to subtract 4 from at least one relevant side
A1 3 Obtain 33.4 cm
（iii）area $A E F=1 / 2 \times 4^{2} \times 1.1$

$$
\begin{aligned}
& =8.8 \\
\text { area } A B C & =1 / 2 \times 10 \times 14 \times \sin 1.1 \\
& =62.4
\end{aligned}
$$

hence total area $=53.6 \mathrm{~cm}^{2}$

M1 Attempt use of $(1 / 2) r^{2} \theta$ ，with $r=4$ and $\theta=1.10$
A1 Obtain 8.8
M1 Attempt use of $(1 / 2) a b \sin \theta$ ，sides consistent with angle used
A1 Obtain 62.4 or better（allow 62.38 or 62．39）
A1 5 Obtain total area as $53.6 \mathrm{~cm}^{2}$ 10
$8 \quad$（i）$\quad u_{5}=8+4 \times 3$

$$
\text { = } 20 \text { A.G. }
$$

（ii）$u_{n}=3 n+5$ ie $p=3, q=5$

M1 Attempt $a+(n-1) d$ or equiv inc list of terms
A1 2 Obtain 20

B1 Obtain correct expression，poss unsimplified，eg $8+3(n-1)$
B1 2 Obtain correct $3 n+5$ ，or $p=3, q=5$ stated
（iii）arithmetic progression
B1 $1 \quad$ Any mention of arithmetic
（iv）$\frac{2 N}{2}(16+(2 N-1) 3)-\frac{N}{2}(16+(N-1) 3)=1256 \quad$ M1 Attempt S_{N} ，using any correct formula （inc $\sum(3 n+5)$ ）
$26 N+12 N^{2}-13 N-3 N^{2}=2512$
M1 Attempt $S_{2 N}$ ，using any correct formula，
$9 N^{2}+13 N-2512=0$
M1＊Attempt subtraction（correct order）and equate to 1256
$(9 N+157)(N-16)=0$
$N=16$

M1dep＊Attempt to solve quadratic in N
A1 5 Obtain $N=16$ only，from correct working
OR：alternative method is to use $n / 2(a+l)=1256$
M1 Attempt given difference as single summation with N terms
M1 \quad Attempt $a=u_{N+1}$
M1 \quad Attempt $l=u_{2 N}$
M1 Equate to 1256 and attempt to solve quadratic
A1 Obtain $N=16$ only，from correct working

9 （i）

M1 Reasonable graph in both quadrants
A1 Correct graph in both quadrants
B1 3 State or imply（ 0,6 ）
（ii） $9^{x}=150$
$x \log 9=\log 150$
$x=2.28$

M1 Introduce logarithms throughout，or equiv with $\log _{9}$
M1 Use $\log a^{b}=b \log a$ and attempt correct method to find x
A1 3 Obtain $x=2.28$
（iii） $6 \times 5^{x}=9^{x}$
M1 Form eqn in x and take logs throughout （any base）
$\log _{3}\left(6 \times 5^{x}\right)=\log _{3} 9^{x}$
$\log _{3} 6+x \log _{3} 5=x \log _{3} 9$
$\log _{3} 3+\log _{3} 2+x \log _{3} 5=2 x$
$x\left(2-\log _{3} 5\right)=1+\log _{3} 2$
$x=\frac{1+\log _{3} 2}{2-\log _{3} 5} \quad$ A．G．

Use $\log a^{b}=b \log a$ correctly on $\log 5^{x}$ or $\log 9^{x}$ or legitimate combination of these two
M1 Use $\log a b=\log a+\log b$ correctly on \log $\left(6 \times 5^{x}\right)$ or $\log 6$
M1 Use $\log _{3} 9=2$ or equiv（need base 3 throughout that line）

A1 5 Obtain $x=\frac{1+\log _{3} 2}{2-\log _{3} 5}$ convincingly
（inc base 3 throughout）

