edexcel

Mark Scheme (Results)

Summer 2013

GCE Further Pure Mathematics 3 (6669/01)

Question Number	Scheme	Marks
2. (a)	$k \operatorname{arsinh}\left(\frac{2 x}{3}\right)(+c) \quad$ or $\quad k \ln \left[p x+\sqrt{\left(p^{2} x^{2}+\frac{9}{4} p^{2}\right)}\right](+c)$	M1
	$\frac{1}{2} \operatorname{arsinh}\left(\frac{2 x}{3}\right)(+c) \quad$ or $\frac{1}{2} \ln \left[p x+\sqrt{\left(p^{2} x^{2}+\frac{9}{4} p^{2}\right)}\right](+c)$	A1
		(2)
(b)	So: $\frac{1}{2} \ln [6+\sqrt{45}]-\frac{1}{2} \ln [-6+\sqrt{45}]=\frac{1}{2} \ln \left[\frac{6+\sqrt{45}}{-6+\sqrt{45}}\right]$	M1
	Uses correct limits and combines logs	
	$=\frac{1}{2} \ln \left[\frac{6+\sqrt{45}}{-6+\sqrt{45}}\right]\left[\frac{6+\sqrt{45}}{6+\sqrt{45}}\right]=\frac{1}{2} \ln \left[\frac{(6+\sqrt{45})^{2}}{9}\right]$	M1
	Correct method to rationalise denominator (may be implied) Method must be clear if answer does not follow their fraction	
	$=\ln [2+\sqrt{5}] \quad$ or $\left.\frac{1}{2} \ln [9+4 \sqrt{5}]\right)$	A1cso
	Note that the last 3 marks can be scored without the need to rationalise e.g. $2 \times \frac{1}{2}\left[\ln \left[2 x+\sqrt{\left(4 x^{2}+9\right)}\right]\right]_{0}^{3}=\ln (6+\sqrt{45})-\ln 3=\ln \left(\frac{6+\sqrt{45}}{3}\right)$ M1: Uses the limits 0 and 3 and doubles M1: Combines Logs A1: $\ln [2+\sqrt{5}]$ oe	
		(3)
		Total 5
Alternative for (a)	$x=\frac{3}{2} \sinh u \Rightarrow \int \frac{1}{\sqrt{9 \sinh ^{2} u+9}} \cdot \frac{3}{2} \cosh u \mathrm{~d} u=k \operatorname{arsinh}\left(\frac{2 x}{3}\right)(+c)$	M1
	$\frac{1}{2} \operatorname{arsinh}\left(\frac{2 x}{3}\right)(+c)$	A1
Alternative for (b)	$\left[\frac{1}{2} \operatorname{arsinh}\left(\frac{2 x}{3}\right)\right]_{-3}^{3}=\frac{1}{2} \operatorname{arsinh} 2-\frac{1}{2} \operatorname{arsinh}-2$	
	$\frac{1}{2} \ln (2+\sqrt{5})-\frac{1}{2} \ln (\sqrt{5}-2)=\frac{1}{2} \ln \left(\frac{2+\sqrt{5}}{\sqrt{5}-2}\right)$	M1
	Uses correct limits and combines logs	
	$=\frac{1}{2} \ln \left(\frac{2+\sqrt{5}}{\sqrt{5}-2} \cdot \frac{\sqrt{5}+2}{\sqrt{5}+2}\right)=\frac{1}{2} \ln \left(\frac{2 \sqrt{5}+4+5+2 \sqrt{5}}{5-4}\right)$	M1
	Correct method to rationalise denominator (may be implied) Method must be clear if answer does not follow their fraction	
	$=\frac{1}{2} \ln [9+4 \sqrt{5}]$	A1cso

Question Number	Scheme		Marks
4.	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{40}{\sqrt{\left(x^{2}-1\right)}}-9$	M1: $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{p}{\sqrt{\left(x^{2}-1\right)}}-q$	M1 A1
		A1: Cao	
	Put $\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathbf{0}$ and obtain $x^{2}=\ldots$. (Allow sign errors only)	e.g. $\left(\frac{1681}{81}\right)$	dM1
		M1: Square root	
	$x=\frac{41}{9}$	A1: $x=\frac{41}{9}$ or exact equivalent $\left(\operatorname{not} \pm \frac{41}{9}\right)$	M1 A1
	$y=40 \ln \left\{\left(\frac{41}{9}\right)+\sqrt{\left(\frac{41}{9}\right)^{2}-1}\right\}-441 "$	Substitutes $x=" \frac{41}{9}$ " into the curve and uses the logarithmic form of arcosh	M1
	So $y=80 \ln 3-41$	Cao	A1
			Total 7

Question Number	Scheme			Marks
(b)	$I_{1}=\int_{0}^{4} x \sqrt{\left(16-x^{2}\right)} \mathrm{d} x=\left[-\frac{1}{3}\left(16-x^{2}\right)^{\frac{3}{2}}\right]_{0}^{4}=\frac{64}{3}$		M1: Correct integration to find I_{1} A1: $\frac{64}{3}$ or equivalent (May be implied by a later work - they are not asked explicitly for I_{1})	M1 A1
	$\frac{64}{3}$ must come from correct work			
	$\begin{gathered} \text { Using } x=4 \sin \theta: \\ I_{1}=\int_{0}^{\frac{\pi}{2}} 4 \sin \theta \sqrt{\left(16-16 \sin ^{2} \theta\right)} 4 \cos \theta \mathrm{~d} \theta=\int_{0}^{\frac{\pi}{2}} 64 \sin \theta \cos ^{2} \theta \mathrm{~d} \theta \\ =\left[-\frac{64}{3} \cos ^{3} \theta\right]_{0}^{\frac{\pi}{2}} \end{gathered}$ M1: A complete substitution and attempt to substitute changed limits A1: $\frac{64}{3}$ or equivalent			
	$I_{5}=\frac{64}{7} I_{3}, I_{3}=\frac{32}{5} I_{1}$	Applies to apply reduction formula twice. First M1 for I_{5} in terms of I_{3}, second M1 for I_{3} in terms of I_{1} (Can be implied)		M1, M1
	$I_{5}=\frac{131072}{105}$	Any exact equivalent (Depends on all previous marks having been scored)		A1
				(5)
				Total 11

Question	Scheme		Marks
8(a)	$(\mathbf{6 i}+\mathbf{2} \mathbf{j}+12 \mathbf{k}) \cdot(3 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k})=34$	Attempt scalar product	M1
	$\left\|\frac{(\mathbf{6 i}+\mathbf{2} \mathbf{j}+\mathbf{1 2 k}) \cdot(\mathbf{3 i}-4 \mathbf{j}+2 \mathbf{k})-5}{\sqrt{3^{2}+4^{2}+2^{2}}}\right\|$	Use of correct formula	M1
	$\sqrt{29}($ not $-\sqrt{29})$	Correct distance (Allow 29/ $\sqrt{29}$)	A1
			(3)
(a) Way 2	$\therefore 6+3 \lambda 3+2-4 \lambda-4+12+2 \lambda 2=5$		M1
	Substitutes the parametric coordinates of the line through $(6,2,12)$ perpendicular to the plane into the cartesian equation.		
	$\lambda=-1 \Rightarrow 3,6,10$ or $-3 \mathbf{i}+4 \mathbf{j}-2 \mathbf{k}$	Solves for λ to obtain the required point or vector.	M1
	$\sqrt{29}$	Correct distance	A1
(a) Way 3	$\begin{aligned} & \text { Parallel plane containing }(6,2,12) \text { is } \\ & \quad \mathbf{r} .(3 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k})=34 \\ & \quad \Rightarrow \frac{\mathbf{r} \cdot(3 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k})}{\sqrt{29}}=\frac{34}{\sqrt{29}} \end{aligned}$	Origin to this plane is $\frac{34}{\sqrt{29}}$	M1
	$\Rightarrow \frac{\mathbf{r} \cdot(3 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k})}{\sqrt{29}}=\frac{5}{\sqrt{29}}$	Origin to plane is $\frac{5}{\sqrt{29}}$	M1
	$\frac{34}{\sqrt{29}}-\frac{5}{\sqrt{29}}=\sqrt{29}$	Correct distance	A1
(b) For a cross product, if the method is unclear, 2 out of 3 components should be correct for M1	$\left\|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & 5\end{array}\right\|=\binom{3}{9}$	M1: Attempts $(2 \mathbf{i}+1 \mathbf{j}+5 \mathbf{k}) \times(\mathbf{i}-\mathbf{j}-2 \mathbf{k})$	M1A1
	$\|1-1-2\|(-3)$	A1: Any multiple of $\mathbf{i}+\mathbf{3 j} \mathbf{- k}$	
	$(\cos \theta)=\frac{(\mathbf{3 i} \mathbf{- 4} \mathbf{j}+\mathbf{2 k}) \cdot \mathbf{(\mathbf { i } + \mathbf { 3 } \mathbf { j } - \mathbf { k })}}{\sqrt{3^{2}+4^{2}+2^{2}} \sqrt{1^{2}+3^{2}+1^{2}}} \quad\left(=\frac{-11}{\sqrt{29} \sqrt{11}}\right)$		M1
	Attempts scalar product of normal vectors including magnitudes		
	52	Obtains angle using arccos (dependent on previous M1)	dM1 A1
	Do not isw and mark the final answer e.g. 90-52 $=38$ loses the A1		(5)
(c)	$\left\|\begin{array}{rrr}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 3 & -1\end{array}\right\|=\binom{2}{-5}$	M1: Attempt cross product of normal vectors	M1A1
	$\|3-4 \quad 2\|$ (-13)	A1: Correct vector	
	$x=0:\left(0, \frac{5}{2}, \frac{15}{2}\right), y=0:(1,0,1), z=0:\left(\frac{15}{13}, \frac{-5}{13}, 0\right)$		M1A1
	M1: Valid attempt at a point on both planes. A1: Correct coordinates May use way 3 to find a point on the line		
	$r \times(-2 i+5 j+13 k)=-5 i-15 j+5 k$	M1: $\mathbf{r} \times$ dir $=$ pos.vector $\times \operatorname{dir}(\mathbf{T h i s}$ way round)	M1A1
		A1: Correct equation	
			(6)

Question Number	Scheme		Marks
(c) $\text { Way } 2$	" $x+3 y-z=0$ " and $3 x-4 y+2 z=5$ uses their cartesian form of and eliminate x, or y or z and substitutes back to obtain two of the variables in terms of the third		M1
	$\begin{aligned} & \left(x=1-\frac{2}{5} y \text { and } z=1+\frac{13}{5} y\right) \text { or }\left(y=\frac{5 z-5}{13} \text { and } x=\frac{15-2 z}{13}\right) \text { or } \\ & \left(y=\frac{5-5 x}{2} \text { and } z=\frac{15-13 x}{2}\right) \end{aligned}$		A1
	$x=\frac{y-\frac{5}{2}}{-\frac{5}{2}}=\frac{z-\frac{15}{2}}{-\frac{13}{2}} \text { or } \frac{x-1}{-\frac{2}{5}}=y=\frac{z-1}{\frac{13}{5}} \text { or } \frac{x-\frac{15}{13}}{-\frac{2}{13}}=\frac{y+\frac{5}{13}}{\frac{5}{13}}=z$		
	Points and Directions: Direction can be any multiple $\left(0, \frac{5}{2}, \frac{15}{2}\right), \mathbf{i}-\frac{5}{2} \mathbf{j}-\frac{13}{2} \mathbf{k}$ or $(1,0,1),-\frac{2}{5} \mathbf{i}+\mathbf{j}+\frac{13}{5} \mathbf{k}$ or $\left(\frac{15}{13},-\frac{5}{13}, 0\right),-\frac{2}{13} \mathbf{i}+\frac{5}{13} \mathbf{j}+\mathbf{k}$		M1 A1
	M1:Uses their Cartesian equations correctly to obtain a point and direction A1: Correct point and direction - it may not be clear which is which i.e. look for the correct numbers either as points or vectors		
	Equation of line in required form: e.g. $\mathbf{r} \times(-2 i+5 j+13 k)=-5 i-15 j+5 k$ Or Equivalent		M1 A1
			(6)
			Total 14
(c) Way 3	$\left(\begin{array}{c} 2 \lambda+\mu \\ \lambda-\mu \\ 5 \lambda-2 \mu \end{array}\right) \cdot\left(\begin{array}{r} 3 \\ -4 \\ 2 \end{array}\right)=5 \Rightarrow 12 \lambda+3 \mu=5$	M1: Substitutes parametric form of Π_{2} into the vector equation of Π_{1} A1: Correct equation	M1A1
	$\begin{aligned} & \mu=\frac{5}{3}, \lambda=0 \operatorname{gives}\left(\frac{5}{3},-\frac{5}{3}, \frac{10}{3}\right) \\ & \mu=0, \lambda=\frac{5}{12} \operatorname{gives}\left(\frac{5}{6}, \frac{5}{12}, \frac{25}{12}\right) \\ & \text { Direction }\left(\begin{array}{c} -2 \\ 5 \\ 13 \end{array}\right) \end{aligned}$	M1: Finds 2 points and direction A1: Correct coordinates and direction	M1A1
	Equation of line in required form: e.g. $r \times(-2 i+5 j+13 k)=-5 i-15 j+5 k$ Or Equivalent		M1A1
	Do not allow 'mixed' methods - mark the best single attempt		
	NB for checking, a general point on the line will be of the form:$(1-2 \lambda, 5 \lambda, 1+13 \lambda)$		

