edexcel

Mark Scheme (Results)
Summer 2012

GCE Further Pure FP3 (6669) Paper 1

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at:
www.pearson.com/uk

Summer 2012
Publications Code UA032243
All the material in this publication is copyright
© Pearson Education Ltd 2012

J une 2012
 6669 Further Pure Maths FP3
 Mark Scheme

Question Number	Scheme	Marks
1. (a)	Uses formula to obtain $e=\frac{5}{4}$ Uses $a e$ formula Uses other formula $\frac{a}{e}$ Obtains both Foci are $(\pm 5,0)$ and Directrices are $x= \pm \frac{16}{5}$ (needs both method marks)	M1A1
M1 (3)		
A1 cso (2)		
(5 marks)		

Notes

a1M1: Uses $b^{2}=a^{2}\left(e^{2}-1\right)$ to get $e>1$
a1A1: cao
a2M1: Uses ae
b1M1: Uses $\frac{a}{e}$
b1A1: cso for both foci and both directrices. Must have both of the 2 previous M marks may be implicit.

Question Number	Scheme	Marks
2.	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\sinh 3 x$	B1
	so $s=\int \sqrt{1+\sinh ^{2} 3 x} \mathrm{~d} x$	M1
	$\therefore s=\int \cosh 3 x \mathrm{~d} x$	A1
	$=\left[\frac{1}{3} \sinh 3 x\right]_{0}^{\text {na }}$	M1
	$=\frac{1}{3} \sinh 3 \ln a=\frac{1}{6}\left[\mathrm{e}^{3 \ln a}-\mathrm{e}^{-3 \ln a}\right]$	DM1
	$=\frac{1}{6}\left(a^{3}-\frac{1}{a^{3}}\right) \quad(\text { so } k=1 / 6)$	$\begin{aligned} & \text { A1 } \\ & \text { (6 marks) } \end{aligned}$

Notes

1B1: cao

1M1: Use of arc length formula, need both $\sqrt{ }$ and $\left(\frac{d y}{d x}\right)^{2}$.
1A1: $\int \cosh 3 x d x$ cao
2M1: Attempt to integrate, getting a hyperbolic function o.e.
3M1: depends on previous M mark. Correct use of lna and 0 as limits. Must see some exponentials.
2A1: cao

Question Number	Scheme	Marks
3. (a)	$\begin{array}{ll} \text { uü } \\ A C=3 \mathbf{i}+6 \mathbf{j}+2 \mathbf{k}, & B C=-3 \mathbf{i}+4 \mathbf{j}+3 \mathbf{k} \\ A C \times B C=10 \mathbf{i}-15 \mathbf{j}+30 \mathbf{k} & \end{array}$	B1, B1 M1 A1
		(4)
(b)	Area of triangle $A B C=\frac{1}{2}\|10 \mathbf{i}-15 \mathbf{j}+30 \mathbf{k}\|=\frac{1}{2} \sqrt{1225}=17.5$	M1 A1 (2)
(c)	Equation of plane is $10 x-15 y+30 z=-20$ or $2 x-3 y+6 z=-4$ So $\mathbf{r} .(2 \mathbf{i}-3 \mathbf{j}+6 \mathbf{k})=-4$ or correct multiple	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & (2) \\ \quad(8 \text { marks) } \end{array}$

Notes

a1B1: \quad AC $=3 \mathbf{i}+6 \mathbf{j}+2 \mathbf{k}$ cao, any form
a2B1: $\quad B C=-3 \mathbf{i}+4 \mathbf{j}+3 \mathbf{k}$ cao, any form
a1M1: Attempt to find cross product, modulus of one term correct.
a1A1: cao, any form.
b1M1: modulus of their answer to (a) - condone missing $1 / 2$ here. To finding area of triangle by correct method.
b1A1: cao.
c1M1: [Using their answer to (a) to] find equation of plane. Look for a.n or b.n or c.n for p. c1A1: cao

Question Number	Scheme	Marks
4(a)	$\begin{aligned} & \quad I_{n}=\left[x^{n}\left(-\frac{1}{2} \cos 2 x\right)\right]_{0}^{\frac{\pi}{4}}-\int_{0}^{\frac{\pi}{4}}-\frac{1}{2} n x^{n-1} \cos 2 x \mathrm{~d} x \\ & \text { so } \\ & I_{n}=\left\langle\left[x^{n}\left(-\frac{1}{2} \cos 2 x\right)\right]_{0}^{\frac{\pi}{4}}\right\rangle+\left[\frac{1}{4} n x^{n-1} \sin 2 x\right]_{0}^{\frac{\pi}{4}}-\int_{0}^{\frac{\pi}{4}} \frac{1}{4} n(n-1) x^{n-2} \sin 2 x \mathrm{~d} x \\ & \text { i.e. } \quad I_{n}=\frac{1}{4} n\left(\frac{\pi}{4}\right)^{n-1}-\frac{1}{4} n(n-1) I_{n-2} * \end{aligned}$	M1 A1 M1 A1 A1cso
(b)	$\begin{aligned} & I_{0}=\int_{0}^{\frac{\pi}{4}} \sin 2 x \mathrm{~d} x=\left[-\frac{1}{2} \cos 2 x\right]_{0}^{\frac{\pi}{4}}=\frac{1}{2} \\ & I_{2}=\frac{1}{4} \times 2 \times\left(\frac{\pi}{4}\right)-\frac{1}{4} \times 2 \times I_{0} \text {, so } I_{2}=\frac{\pi}{8}-\frac{1}{4} \end{aligned}$	M1 A1 M1 A1 (4)
(c)	$I_{4}=\left(\frac{\pi}{4}\right)^{3}-\frac{1}{4} \times 4 \times 3 I_{2}=\frac{\pi^{3}}{64}-3\left(\frac{\pi}{8}-\frac{1}{4}\right)=\frac{1}{64}\left(\pi^{3}-24 \pi+48\right) *$	M1 A1cso (2)

Notes

a1M1: Use of integration by parts, integrating $\sin 2 x$, differentiating x^{n}.
a1A1: cao
a2M1: Second application of integration by parts, integrating $\cos 2 x$, differentiating x^{n-1}.
a2A1: cao
a3A1: cso Including correct use of $\frac{\pi}{4}$ and 0 as limits.
b1M1: Integrating to find I_{0} or setting up parts to find I_{2}.
b1A1: cao (Accept $I_{0}=1 / 2$ here for both marks)
b2M1: Finding I_{2} in terms of π. If ' n ''s left in M0
b2A1: cao
c1M1: Finding I_{4} in terms of I_{2} then in terms of π. If ' n ''s left in M0
c1A1: cso

Question Number	Scheme	Marks
5. (a)	$\operatorname{ar} \sinh 2 x,+x \frac{2}{\sqrt{1+4 x^{2}}}$	M1A1, A1
(b)	$\begin{aligned} \therefore \int_{0}^{\sqrt{2}} \operatorname{arsinh} 2 x \mathrm{~d} x & =[x \operatorname{arsinh} 2 x]_{0}^{\sqrt{2}}-\int_{0}^{\sqrt{2}} \frac{2 x}{\sqrt{1+4 x^{2}}} \mathrm{~d} x \\ & =[x \operatorname{ar} \sinh 2 x]_{0}^{\sqrt{2}}-\left[\frac{1}{2}\left(1+4 x^{2}\right)^{\frac{1}{2}}\right]_{0}^{\sqrt{2}} \\ & =\sqrt{2} \operatorname{arsinh} 2 \sqrt{2}-\left[\frac{3}{2}-\frac{1}{2}\right] \\ & =\sqrt{2} \ln (3+2 \sqrt{2})-1 \end{aligned}$	1M1 1A1ft 2M1 2A1 3DM1 4M1 3A1 (7) (10 marks)

Notes

a1M1: Differentiating getting an arsinh term and a term of the form $\frac{p x}{\sqrt{1 \pm q x^{2}}}$
a1A1: cao $\operatorname{arsinh} 2 x$
a2A1: cao $+\frac{2 x}{\sqrt{1+4 x^{2}}}$
b1M1: rearranging their answer to (a). OR setting up parts
b1A1: ft from their (a) OR setting up parts correctly
b2M1: Integrating getting an arsinh or arcosh term and a $\left(1 \pm a x^{2}\right)^{\frac{1}{2}}$ term o.e..
b2A1: cao
b3DM1: depends on previous M, correct use of $\sqrt{2}$ and 0 as limits.
b4M1: converting to log form.
b3A1: cao depends on all previous M marks.

Question Number	Scheme	Marks
6(a)	$\begin{aligned} & \frac{2 x}{a^{2}}+\frac{2 y}{b^{2}} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \quad \text { and so } \quad \frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{x b^{2}}{y a^{2}}=-\frac{b \cos \theta}{a \sin \theta} \\ & \therefore y-b \sin \theta=-\frac{b \cos \theta}{a \sin \theta}(x-a \cos \theta) \\ & \quad \text { Uses } \cos ^{2} \theta+\sin ^{2} \theta=1 \text { to give } \frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}=1 \end{aligned}$	M1 A1 M1 A1cso (4)
(b)	Gradient of circle is $-\frac{\cos \theta}{\sin \theta}$ and equation of tangent is $y-a \sin \theta=-\frac{\cos \theta}{\sin \theta}(x-a \cos \theta)$ or sets $a=b$ in previous answer So $y \sin \theta+x \cos \theta=a$	M1 A1 (2)
(c)	Eliminate x or y to give $y \sin \theta\left(\frac{a}{b}-1\right)=0$ or $x \cos \theta\left(\frac{b}{a}-1\right)=b-a$ l_{1} and l_{2} meet at $\left(\frac{a}{\cos \theta}, 0\right)$	M1 A1, B1 (3)
(d)	The locus of R is part of the line $y=0$, such that $x \geq a$ and $x \leq-a$ Or clearly labelled sketch. Accept "real axis"	B1, B1 (2) (11 marks)

Notes

a1M1: Finding gradient in terms of θ. Must use calculus.
a1A1: cao
a2M1: Finding equation of tangent
a2A1: cso (answer given). Need to get $\cos ^{2} \theta+\sin ^{2} \theta$ on the same side.
b1M1: Finding gradient and equation of tangent, or setting $a=b$.
b1A1: cao need not be simplified.
c1M1: As scheme
c1A1: $x=\frac{a}{\cos \theta}$, need not be simplified.
c1B1: $y=0$, need not be simplified.
d1B1: Identifying locus as $y=0$ or real/' x ' axis.
d2B1: Depends on previous B mark, identifies correct parts of $y=0$. Condone use of strict inequalities.

Question Number	Scheme	Marks
7(a)	$\begin{aligned} \mathrm{f}(x) & =5 \cosh x-4 \sinh x=5 \times \frac{1}{2}\left(e^{x}+e^{-x}\right)-4 \times \frac{1}{2}\left(e^{x}-e^{-x}\right) \\ & =\frac{1}{2}\left(e^{x}+9 e^{-x}\right) \quad \text { * } \end{aligned}$	M1 A1cso (2)
(b)	$\frac{1}{2}\left(e^{x}+9 e^{-x}\right)=5 \Rightarrow e^{2 x}-10 e^{x}+9=0$ So $e^{x}=9$ or 1 and $x=\ln 9$ or 0	M1 A1 M1 A1 (4)
(c)	Integral may be written $\int \frac{2 e^{x}}{e^{2 x}+9} \mathrm{~d} x$ This is $\frac{2}{3} \arctan \left(\frac{e^{x}}{3}\right)$ Uses limits to give $\left[\frac{2}{3} \arctan 1-\frac{2}{3} \arctan \left(\frac{1}{\sqrt{3}}\right)\right]=\left[\frac{2}{3} \times \frac{\pi}{4}-\frac{2}{3} \times \frac{\pi}{6}\right]=\frac{\pi}{18} *$	B1 M1 A1 DM1 A1cso (5) (11 marks)

Notes

a1M1: Replacing both coshx and $\sinh x$ by terms in e^{x} and e^{-x} condone sign errors here.
a1A1: cso (answer given)
b1M1: Getting a three term quadratic in e^{x}
b1A1: cao
b2M1: solving to $x=$
b2A1: cao need $\ln 9$ (o.e) and 0 (not $\ln 1$)
c1B1: cao getting into suitable form, may substitute first.
c1M1: Integrating to give term in arctan
c1A1: cao
c2M1: Depends on previous M mark. Correct use of $\ln 3$ and $1 / 2 \ln 3$ as limits.
c2A1: cso must see them subtracting two terms in π.

Question Number	Scheme	Marks
8. (a)	$\left\|\begin{array}{ccc} 2-\lambda & 1 & 0 \\ 1 & 2-\lambda & 0 \\ -1 & 0 & 4-\lambda \end{array}\right\|=0 \therefore(2-\lambda)(2-\lambda)(4-\lambda)-(4-\lambda)=0$	M1
	$\begin{aligned} & (4-\lambda)=0 \text { verifies } \lambda=4 \text { is an eigenvalue (can be seen anywhere) } \\ & \therefore(4-\lambda)\left\{4-4 \lambda+\lambda^{2}-1\right\}=0 \therefore(4-\lambda)\left\{\lambda^{2}-4 \lambda+3\right\}=0 \end{aligned}$	M1 A1
	$\therefore(4-\lambda)(\lambda-1)(\lambda-3)=0$ and 3 and 1 are the other two eigenvalues	M1 A1
(b)	$\operatorname{Set}\left(\begin{array}{ccc}2 & 1 & 0 \\ 1 & 2 & 0 \\ -1 & 0 & 4\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=4\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ or $\left(\begin{array}{ccc}-2 & 1 & 0 \\ 1 & -2 & 0 \\ -1 & 0 & 0\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$	M1
	Solve $-2 x+y=0$ and $x-2 y=0$ and $-x=0$ to obtain $x=0, y=0$, $z=k$ Obtain eigenvector as \mathbf{k} (or multiple)	M1 A1
(c)	l_{1} has equation which may be written $\left(\begin{array}{c}3+\lambda \\ 2-\lambda \\ -2+2 \lambda\end{array}\right)$ So l_{2} is given by $\mathbf{r}=\left(\begin{array}{lll}2 & 1 & 0 \\ 1 & 2 & 0 \\ -1 & 0 & 4\end{array}\right)\left(\begin{array}{c}3+\lambda \\ 2-\lambda \\ -2+2 \lambda\end{array}\right)$ i.e. $\mathbf{r}=\left(\begin{array}{c}8+\lambda \\ 7-\lambda \\ -11+7 \lambda\end{array}\right)$ So $(\mathbf{r}-\mathbf{c}) \times \mathbf{d}=\mathbf{0}$ where $\mathbf{c}=8 \mathbf{i}+7 \mathbf{j}-11 \mathbf{k}$ and $\mathbf{d}=\mathbf{i}-\mathbf{j}+7 \mathbf{k}$	B1
		M1
		M1 A1
		A1ft (5) (13 marks)

Notes

a1M1: Condone missing $=0$. (They might expand the determinant using any row or column)
a2M1: Shows $\lambda=4$ is an eigenvalue. Some working needed need to see $=0$ at some stage.
a1A1: Three term quadratic factor cao, may be implicit (this A depends on $1^{\text {st }} \mathrm{M}$ only)
a2M1: Attempt at factorisation (usual rules), solving to $\lambda=$.
a2A1: cao. If they state $\lambda=1$ and 3 please give the marks.
b1M1: Using $A x=4 x$ o.e.
b2M1: Getting a pair of correct equations.
b1A1: cao
c1B1: Using \mathbf{a} and \mathbf{b}.
c1M1: Using $r=M x$ their matrix in \mathbf{a} and \mathbf{b}.
c2M1: Getting an expression for l_{2} with at least one component correct.
c1A1: cao all three components correct
c2A1ft: ft their vector, must have $\mathbf{r}=$ or $(\mathbf{r}-\mathbf{c}) \mathbf{x ~ d}=0$ need both equation and r .

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA032243 Summer 2012

Welsh Assembly Government
For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning

