J une 2009
 6669 Further Pure Mathematics FP3 (new)
 Mark Scheme

Question Number	Scheme	Marks
Q1	$\begin{aligned} & \quad \frac{7}{\cosh x}-\frac{\sinh x}{\cosh x}=5 \Rightarrow \frac{14}{e^{x}+e^{-x}}-\frac{\left(e^{x}-e^{-x}\right)}{e^{x}+e^{-x}}=5 \\ & \therefore 14-\left(e^{x}-e^{-x}\right)=5\left(e^{x}+e^{-x}\right) \Rightarrow 6 e^{x}-14+4 e^{-x}=0 \\ & \therefore 3 e^{2 x}-7 e^{x}+2=0 \Rightarrow\left(3 e^{x}-1\right)\left(e^{x}-2\right)=0 \\ & \therefore e^{x}=\frac{1}{3} \text { or } 2 \\ & x=\ln \left(\frac{1}{3}\right) \text { or } \ln 2 \end{aligned}$	M1 A1 M1 A1 B1ft [5]
Alternative (i) Alternative (ii)	Write $7-\sinh x=5 \cosh x$, then use exponential substitution $7-\frac{1}{2}\left(e^{x}-e^{-x}\right)=\frac{5}{2}\left(e^{x}+e^{-x}\right)$ Then proceed as method above. $\begin{aligned} & (7 \operatorname{sech} x-5)^{2}=\tanh ^{2} x=1-\operatorname{sech}^{2} x \\ & 50 \operatorname{sech} x-70 \operatorname{sech} x+24=0 \\ & 2(5 \operatorname{sech} x-3)(5 \operatorname{sech} x-4)=0 \\ & \operatorname{sech} x=\frac{3}{5} \text { or } \operatorname{sech} x=\frac{4}{5} \\ & x=\ln \left(\frac{1}{3}\right) \text { or } \ln 2 \end{aligned}$	M1 A1 M1 A1 B1ft
Q2 (a)	$\mathbf{b} \times \mathbf{C}=0 \mathbf{i}+5 \mathbf{j}+5 \mathbf{k}$	M1 A1 A1 (3)
(b)	$\text { a. }(\mathbf{b} \times \mathbf{c})=0+5=5$	M1 A1 ft (2)
(c)	Area of triangle $O B C=\frac{1}{2}\|5 \mathbf{j}+5 \mathbf{k}\|=\frac{5}{2} \sqrt{2}$	M1 A1 (2)
(d)	Volume of tetrahedron $=\frac{1}{6} \times 5=\frac{5}{6}$	B1 ft (1) [8]

Question Number	Scheme	Marks
Q3 (a)	$\left\|\begin{array}{ccc} 6-\lambda & 1 & -1 \\ 0 & 7-\lambda & 0 \\ 3 & -1 & 2-\lambda \end{array}\right\|=0 \quad \therefore(6-\lambda)(7-\lambda)(2-\lambda)+3(7-\lambda)=0$	M1
	$\begin{aligned} & (7-\lambda)=0 \text { verifies } \lambda=7 \text { is an eigenvalue } \quad \text { (can be seen anywhere) } \\ & \therefore(7-\lambda)\left\{12-8 \lambda+\lambda^{2}+3\right\}=0 \therefore(7-\lambda)\left\{\lambda^{2}-8 \lambda+15\right\}=0 \end{aligned}$	M1 A1
	$\therefore(7-\lambda)(\lambda-5)(\lambda-3)=0$ and 3 and 5 are the other two eigenvalues	M1 A1
(b)	$\operatorname{Set}\left(\begin{array}{lrr}6 & 1 & -1 \\ 0 & 7 & 0 \\ 3 & -1 & 2\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=7\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ or $\left(\begin{array}{rrr}-1 & 1 & -1 \\ 0 & 0 & 0 \\ 3 & -1 & -5\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$	M1
	Solve $-x+y-z=0$ and $3 x-y-5 z=0$ to obtain $x=3 z$ or $y=4 z$ and a second equation which can contain 3 variables	M1 A1
	Obtain eigenvector as $3 \mathbf{i}+4 \mathbf{j}+\mathbf{k}$ (or multiple)	A1 (4)

Question Number	Scheme	Marks
Q4 (a) (b)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2} x^{-\frac{1}{2}} \times \frac{1}{\sqrt{1+(\sqrt{x}})^{2}} \\ & \begin{aligned} \therefore \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{1}{2} x^{-\frac{1}{2}}}{\sqrt{1+x}}\left(=\frac{1}{2 \sqrt{x(1+x)}}\right) \\ \begin{aligned} \therefore \int_{\frac{1}{4}}^{4} \frac{1}{\sqrt{x(x+1)}} \mathrm{d} x & =[2 \operatorname{ar} \sinh \sqrt{x}]_{\frac{1}{4}}^{4} \\ & =\left[2 \operatorname{arsinh} 2-2 \operatorname{ar} \sinh \left(\frac{1}{2}\right)\right] \\ & =[2 \ln (2+\sqrt{5})]-\left[2 \ln \left(\frac{1}{2}+\sqrt{\frac{5}{4}}\right)\right] \end{aligned} \\ \begin{array}{r} 2 \ln \frac{(2+\sqrt{5})}{\left(\frac{1}{2}+\sqrt{\left(\frac{5}{4}\right)}\right)}=2 \ln \frac{2(2+\sqrt{5})}{(1+\sqrt{5})}=2 \ln \frac{2(\sqrt{5}+2)(\sqrt{5}-1)}{(\sqrt{5}+1)(\sqrt{5}-1)}=2 \ln \frac{(3+\sqrt{5})}{2} \\ =\ln \frac{(3+\sqrt{5})(3+\sqrt{5})}{4}=\ln \frac{14+6 \sqrt{5}}{4}=\ln \left(\frac{7}{2}+\frac{3 \sqrt{5}}{2}\right) \end{array} \end{aligned} . \end{aligned}$	B1, M1 A1 (3) M1 M1 M1 M1 A1 A1 (6) [9]
Alternative (i) for part (a)	Use sinh $y=\sqrt{x}$ and state $\cosh y \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{2} x^{-\frac{1}{2}}$	B1 M1 A1 (3)
Alternative (i) for part (b)	Use $x=\tan ^{2} \theta, \frac{\mathrm{~d} x}{\mathrm{~d} \theta}=2 \tan \theta \sec ^{2} \theta$ to give $2 \int \sec \theta \mathrm{~d} \theta=[2 \ln (\sec \theta+\tan \theta]$ $=\left[2 \ln (\sec \theta+\tan \theta]_{\tan \theta=\frac{1}{2}}^{\tan \theta=2}\right.$ i.e. use of limits then proceed as before from line 3 of scheme	M1 M1
Alternative (ii) for part (b)	$\begin{aligned} & \text { Use } \int \frac{1}{\sqrt{\left[\left(x+\frac{1}{2}\right)^{2}-\frac{1}{4}\right]}} \mathrm{d} x=\operatorname{arcosh} \frac{x+\frac{1}{2}}{\frac{1}{2}} \\ & =\left[\operatorname{arcosh} 9-\operatorname{arcosh}\left(\frac{3}{2}\right)\right] \end{aligned}$	M1 M1
	$\begin{aligned} & =[\ln (9+\sqrt{80})]-\left[\ln \left(\frac{3}{2}+\frac{1}{2} \sqrt{5}\right)\right] \\ & =\ln \frac{(9+\sqrt{80})}{\left(\frac{3}{2}+\frac{1}{2} \sqrt{5}\right)}=\ln \frac{2(9+\sqrt{80})(3-\sqrt{5})}{(3+\sqrt{5})(3-\sqrt{5})}, \\ & =\ln \frac{2(9+4 \sqrt{5})(3-\sqrt{5})}{(3+\sqrt{5})(3-\sqrt{5})}=\ln \left(\frac{7}{2}+\frac{3 \sqrt{5}}{2}\right) \end{aligned}$	M1 M1 A1 A1 (6)
		[9]

Question Number	Scheme	Marks
Q5 (a)	$-\left(25-x^{2}\right)^{\frac{1}{2}} \quad(+c)$	M1A1 (2)
(b)	$I_{n}=\int x^{n-1} \cdot \frac{x}{\sqrt{\left(25-x^{2}\right)}} \mathrm{d} x=-x^{n-1} \sqrt{25-x^{2}}+\int(n-1) x^{n-2} \sqrt{\left(25-x^{2}\right.} \mathrm{d} x$	M1 Alft
	$I_{n}=\left[-x^{n-1} \sqrt{25-x^{2}}\right]_{0}^{5}+\int_{0}^{5} \frac{(n-1) x^{n-2}\left(25-x^{2}\right)}{\sqrt{\left(25-x^{2}\right)}} \mathrm{d} x$	M1
	$I_{n}=0+25(n-1) I_{n-2}-(n-1) I_{n}$	M1
	$\therefore n I_{n}=25(n-1) I_{n-2} \text { and so } I_{n}=\frac{25(n-1)}{n} I_{n-2}$	A1 (5)
(c)	$I_{0}=\int_{0}^{5} \frac{1}{\sqrt{\left(25-x^{2}\right.}} \mathrm{d} x=\left[\arcsin \left(\frac{x}{5}\right)\right]_{0}^{5}=\frac{\pi}{2}$	M1 A1
	$I_{4}=\frac{25 \times 3}{4} \times \frac{25 \times 1}{2} I_{0}=\frac{1875}{16} \pi$	M1 A1 (4)
		[11]
Alternative for (b)	$\begin{aligned} & \text { Using substitution } x=5 \sin \theta \\ & I_{n}=5^{n} \int_{0}^{\frac{\pi}{2}} \sin ^{n} \theta \mathrm{~d} \theta=\left[-5^{n} \sin ^{n-1} \theta \cos \theta\right]_{0}^{\frac{\pi}{2}}+5^{n}(n-1) \int_{0}^{\frac{\pi}{2}} \sin ^{n-2} \theta \cos ^{2} \theta \mathrm{~d} \theta \end{aligned}$	M1A1
	$=\left[-5^{n} \sin ^{n-1} \theta \cos \theta\right]_{0}^{\frac{\pi}{2}}+5^{n}(n-1) \int_{0}^{\frac{\pi}{2}} \sin ^{n-2} \theta\left(1-\sin ^{2} \theta\right) \mathrm{d} \theta$	M1
	$I_{n}=0+25(n-1) I_{n-2}-(n-1) I_{n}$	M1
	$\therefore n I_{n}=25(n-1) I_{n-2} \text { and so } I_{n}=\frac{25(n-1)}{n} I_{n-2}$	A1
		(5)

Question Number	Scheme	Marks
Q7 (a) (b)	If the lines meet, $-1+3 \lambda=-4+3 \mu$ and $2+4 \lambda=2 \mu$ Solve to give $\lambda=0$ ($\mu=1$ but this need not be seen $)$. Also $1-\lambda=\alpha$ and so $\alpha=1$. $\left\|\begin{array}{rrr}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 3 & 4 \\ 0 & 3 & 2\end{array}\right\|=-6 \mathbf{i}+2 \mathbf{j}-3 \mathbf{k}$ is perpendicular to both lines and hence to the plane The plane has equation $\mathbf{r} . \mathbf{n}=\mathbf{a} . \mathbf{n}$, which is $-6 x+2 y-3 z=-14$, i.e. $-6 x+2 y-3 z+14=0$.	M1 M1 A1 B1 (4) M1 A1 M1 Al o.a.e. (4)
OR (b)	Alternative scheme Use $(1,-1,2)$ and $(\alpha,-4,0)$ in equation $a x+b y+c z+d=0$ And third point so three equations, and attempt to solve Obtain $6 x-2 y+3 z=$ $(6 x-2 y+3 z)-14=0$	M1 M1 A1 Al o.a.e. (4)
(c)	$\left(a_{1}-a_{2}\right)=\mathbf{i}-3 \mathbf{j}-2 k$ Use formula $\frac{\left(\mathbf{a}_{1}-\mathbf{a}_{2}\right) \bullet \mathbf{n}}{\|\mathbf{n}\|}=\frac{(\mathbf{i}-\mathbf{3} \mathbf{j}-\mathbf{2 k}) \cdot(-\mathbf{6 i} \mathbf{i} \mathbf{2 j} \mathbf{- 3 k})}{\sqrt{(36+4+9)}}=\left(\frac{-6}{7}\right)$ Distance is $\frac{6}{7}$	M1 M1 A1 (3) [11]

Question Number	Scheme	Marks
Q8 (a)	$\frac{\mathrm{d} x}{\mathrm{~d} \theta}=-3 \sin \theta, \frac{\mathrm{~d} y}{\mathrm{~d} \theta}=5 \cos \theta$	B1
	$\text { so } \mathrm{S}=2 \pi \int 5 \sin \theta \sqrt{(-3 \sin \theta)^{2}+(5 \cos \theta)^{2}} \mathrm{~d} \theta$	M1
	$\therefore S=2 \pi \int 5 \sin \theta \sqrt{9-9 \cos ^{2} \theta+25 \cos ^{2} \theta} \mathrm{~d} \theta$	M1
	Let $c=\cos \theta, \frac{d c}{d \theta}=-\sin \theta$, limits 0 and $\frac{\pi}{2}$ become 1 and 0	M1
	So $S=k \pi \int_{0}^{\alpha} \sqrt{16 c^{2}+9} \mathrm{~d} c$, where $k=10$, and α is 1	A1, A1 (6)
	Let $c=\frac{3}{4} \sinh u$. Then $\frac{d c}{d u}=\frac{3}{4} \cosh u$	M1
	So $S=k \pi \int_{?} \sqrt{9 \sinh ^{2} u+9} \frac{3}{4} \cosh u \mathrm{~d} u$	A1
	$=k \pi \int_{?}^{?} \frac{9}{4} \cosh ^{2} u \mathrm{~d} u=k \pi \int_{?}^{?} \frac{9}{8}(\cosh 2 u+1) \mathrm{d} u$	M1
	$=k \pi\left[\frac{9}{16} \sinh 2 u+\frac{9}{8} u\right]_{0}^{d}$	A1
	$=\frac{45 \pi}{4}\left[\frac{20}{9}+\ln 3\right] \quad \text { i.e. } \underline{117}$	B1 (5)
		[11]

J une 2010

Further Pure Mathematics FP3 6669
 Mark Scheme

Question Number	Scheme	Marks
1.	$\pm \frac{a}{e}=8, \pm a e=2$ 	$\frac{a}{e} \times a e=a^{2}=16$ $a=4$
	$b^{2}=a^{2}\left(1-e^{2}\right)=a^{2}-a^{2} e^{2}$ $\Rightarrow b^{2}=16-4=12$ $\Rightarrow b=\sqrt{12}=2 \sqrt{3}$	B1, B1

Question Number	Scheme	Marks
4(a) (b)	$\begin{gathered} \int(a-x)^{n} \cos x \mathrm{~d} x=(a-x)^{n} \sin x+\int n(a-x)^{n-1} \sin x \mathrm{~d} x \\ \quad\left[(a-x)^{n} \sin x\right]_{0}^{a}=0 \\ =-n(a-x)^{n-1} \cos x-\int n(n-1)(a-x)^{n-2} \cos x \mathrm{~d} x \\ \mathrm{I}_{n}=n a^{n-1}-n(n-1) \mathrm{I}_{n-2} \quad * \\ \mathrm{I}_{2}=2\left(\frac{\pi}{2}\right)-2 \int_{0}^{\frac{\pi}{2}} \cos x \mathrm{~d} x \\ =\pi-2[\sin x]_{0}^{\frac{\pi}{2}}=\pi-2 \end{gathered}$	$\begin{cases}\text { M1A1 } & \\ \text { A1 } \\ \text { dM1 } \\ \text { A1 } & \text { (5) } \\ \text { M1 A1 } & \\ \text { A1 } & \text { (3) } \\ & \mathbf{8}\end{cases}$

Question Number	Scheme	Marks
6(a)	$\begin{gathered} \left(\begin{array}{ccc} 1 & 0 & 3 \\ 0 & -2 & 1 \\ k & 0 & 1 \end{array}\right)\left(\begin{array}{l} 6 \\ 1 \\ 6 \end{array}\right)=\lambda\left(\begin{array}{l} 6 \\ 1 \\ 6 \end{array}\right) \\ \left(\begin{array}{c} 24 \\ 4 \\ 6 k+6 \end{array}\right)=\left(\begin{array}{c} 6 \lambda \\ \lambda \\ 6 \lambda \end{array}\right) \end{gathered}$ Uses the first or second row to obtain $\lambda=4$	M1A1 (2)
(b)	Uses the third row and their $\lambda=4$ to obtain $6 k+6=24 \Rightarrow k=3$	M1 A1 (2)
(c)	$\left\|\begin{array}{ccc} 1-\lambda & 0 & 3 \\ 0 & -2-\lambda & 1 \\ 3 & 0 & 1-\lambda \end{array}\right\|=0$	
	$\begin{gathered} \Rightarrow(1-\lambda)((-2-\lambda)(1-\lambda)-0)-0(0(1-\lambda)-3)+3(0-3(-2-\lambda))=0 \\ \Rightarrow(1-\lambda)(-2-\lambda)(1-\lambda)+9(2+\lambda)=(2+\lambda)\left(9-(1-\lambda)^{2}\right)=0 \\ \left(\lambda^{3}-12 \lambda-16=0\right) \\ \Rightarrow(\lambda+2)\left(\lambda^{2}-2 \lambda-8\right)=0 \end{gathered}$	M1 A1
	$\begin{gathered} \Rightarrow(\lambda+2)(\lambda+2)(\lambda-4)=0 \\ \lambda=-2,4 \end{gathered}$	$\begin{array}{\|l} \text { M1 } \\ \text { A1 } \tag{4} \end{array}$
(d)	Parametric form of $l_{1}:(t+2,-3 t, 4 t-1)$	M1
	$\left(\begin{array}{ccc} 1 & 0 & 3 \\ 0 & -2 & 1 \\ 3 & 0 & 1 \end{array}\right)\left(\begin{array}{l} t+2 \\ -3 t \\ 4 t-1 \end{array}\right)=\left(\begin{array}{l} 13 t-1 \\ 10 t-1 \\ 7 t+5 \end{array}\right)$	M1 A1
	Cartesian equations of $l_{2}: \frac{x+1}{13}=\frac{y+1}{10}=\frac{z-5}{7}$	ddM1A1(5)
		13

J une 2011
 Further Pure Mathematics FP3 6669
 Mark Scheme

Question Number	Scheme	Marks
1.	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=6 x^{2} \text { and so surface area }=2 \pi \int 2 x^{3} \sqrt{\left(1+\left(6 x^{2}\right)^{2}\right.} \mathrm{d} x \\ & =4 \pi\left[\frac{2}{3 \times 36 \times 4}\left(1+36 x^{4}\right)^{\frac{3}{2}}\right] \end{aligned}$ Use limits 2 and 0 to give $\frac{4 \pi}{216}[13860.016-1]=806$ (to 3 sf)	$\begin{aligned} & \text { B1 } \\ & \text { M1 A1 } \\ & \text { DM1 A1 } \end{aligned}$
$\begin{array}{r} \text { B1 } \\ \text { 1M1 } \\ \\ \text { 1A1 } \\ \text { 2DM1 } \\ \text { 2A1 } \end{array}$	Notes: Both bits CAO but condone lack of 2π Integrating $\int\left(y \sqrt{1+\left(\text { their } \frac{d y}{d x}\right)^{2}}\right) d x$, getting $k\left(1+36 x^{4}\right)^{\frac{3}{2}}$, condone lack of 2π If they use a substitution it must be a complete method. CAO Correct use of 2 and 0 as limits CAO	
2. (a) (i) (ii)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x}{\sqrt{\left(1-x^{2}\right)}}+\arcsin x$ At given value derivative $=\frac{1}{\sqrt{3}}+\frac{\pi}{6}=\frac{2 \sqrt{3}+\pi}{6}$	$\begin{array}{\|ll} \text { M1 A1 } & \\ \text { B1 } & \\ & \\ & \\ \hline \end{array}$
(b)	$\begin{aligned} & \frac{d y}{d x}=\frac{6 e^{2 x}}{1+9 e^{4 x}} \\ & =\frac{6}{e^{-2 x}+9 e^{2 x}} \\ & =\frac{3}{\frac{5}{2}\left(e^{2 x}+e^{-2 x}\right)+\frac{4}{2}\left(e^{2 x}-e^{-2 x}\right)} \\ & \therefore \frac{d y}{d x}=\frac{3}{5 \cosh 2 x+4 \sinh 2 x} \end{aligned}$	1M1 A1 2M1 3M1 A1 cso
(a) M1	Notes: Differentiating getting an arcsinx term and $a \frac{1}{\sqrt{1 \pm x^{2}}}$ term CAO CAO any correct form	

Question Number	Scheme	Marks
$\text { (b) 1M1 } \begin{array}{r} \text { 1A1 } \\ \text { 2M1 } \\ \text { 3M1 } \\ \text { 2A1 } \end{array}$	Of correct form $\frac{a e^{2 x}}{1 \pm b e^{4 x}}$ CAO Getting from expression in $e^{4 x}$ to $e^{2 x}$ and $e^{-2 x}$ only Using $\sinh 2 \mathrm{x}$ and $\cosh 2 \mathrm{x}$ in terms of $\left(e^{2 x}+e^{-2 x}\right)$ and $\left(e^{2 x}-e^{-2 x}\right)$ CSO - answer given	
(a)	$x^{2}-10 x+34=(x-5)^{2}+9 \text { so } \frac{1}{x^{2}-10 x+34}=\frac{1}{(x-5)^{2}+9}=\frac{1}{u^{2}+9}$ (mark can be earned in either part (a) or (b)) $I=\int \frac{1}{u^{2}+9} d u=\left[\frac{1}{3} \arctan \left(\frac{u}{3}\right)\right] \quad I=\int \frac{1}{(x-5)^{2}+9} d u=\left[\frac{1}{3} \arctan \left(\frac{x-5}{3}\right)\right]$ Uses limits 3 and 0 to give $\frac{\pi}{12} \quad$ Uses limits 8 and 5 to give $\frac{\pi}{12}$	M1 A1 DM1 A1
(b) Alt 1	$\begin{gathered} I=\ln \left(\left(\frac{x-5}{3}\right)+\sqrt{\left(\frac{x-5}{3}\right)^{2}+1}\right) \text { or } I=\ln \left(\frac{x-5+\sqrt{(x-5)^{2}+9}}{3}\right) \\ \text { or } I=\ln \left((x-5)+\sqrt{(x-5)^{2}+9}\right) \end{gathered}$ Uses limits 5 and 8 to give $\ln (1+\sqrt{2})$. Uses u $=\mathrm{x}$-5 to get $I=\int \frac{1}{\sqrt{u^{2}+9}} d u=\left[\operatorname{ar} \sinh \left(\frac{u}{3}\right)\right]=\ln \left\{u+\sqrt{u^{2}+9}\right\}$ Uses limits 3 and 0 and \ln expression to give $\ln (1+\sqrt{2})$. Use substitution $x-5=3 \tan \theta, \quad \frac{d x}{d \theta}=3 \sec ^{2} \theta$ and so $I=\int \sec \theta d \theta=\ln (\sec \theta+\tan \theta)$ Uses limits 0 and $\frac{\pi}{4}$ to get $\ln (1+\sqrt{2})$.	M1 A1 DM1 A1 (4)
(b) Alt 2 (b) Alt 3		M1 A1 DM1 A1 (4) M1 A1 DM1 A1
		(4)
	Notes:	
(a) B1	CAO allow recovery in (b)	
1M1	Integrating getting k arctan term	
1A1	CAO	
2DM1	Correctly using limits.	
2A1		

Question Number	Scheme	Marks
$\begin{array}{r} \text { (b) 1M1 } \\ \text { 1A1 } \\ \text { 2DM1 } \\ \text { 2A1 } \end{array}$	Integrating to get a \ln or hyperbolic term CAO Correctly using limits. CAO	
4. (a)	$\begin{aligned} & I_{n}=\left[\frac{x^{3}}{3}(\ln x)^{n}\right]-\int \frac{x^{3}}{3} \times \frac{n(\ln x)^{n-1}}{x} d x \\ & =\left[\frac{x^{3}}{3}(\ln x)^{n}\right]_{1}^{e}-\int_{1}^{e} \frac{n x^{2}(\ln x)^{n-1}}{3} d x \\ & \therefore I_{n}=\frac{e^{3}}{3}-\frac{n}{3} I_{n-1} \quad * \end{aligned}$	M1 A1 DM1 A1cso
(b) (a)1M1 1A1 2DM1 2A1 (b)1M1 1A1 2M1 2A1	$\begin{aligned} & I_{0}=\int_{1}^{e} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{1}^{e}=\frac{e^{3}}{3}-\frac{1}{3} \text { or } I_{1}=\frac{e^{3}}{3}-\frac{1}{3}\left(\frac{e^{3}}{3}-\frac{1}{3}\right)=\frac{2 e^{3}}{9}+\frac{1}{9} \\ & I_{1}=\frac{e^{3}}{3}-\frac{1}{3} I_{0}, I_{2}=\frac{e^{3}}{3}-\frac{2}{3} I_{1} \text { and } I_{3}=\frac{e^{3}}{3}-\frac{3}{3} I_{2} \text { so } I_{3}=\frac{4 e^{3}}{27}+\frac{2}{27} \end{aligned}$ Notes: Using integration by parts, integrating x^{2}, differentiating $(\ln x)^{n}$ CAO Correctly using limits 1 and e CSO answer given Evaluating I_{0} or I_{1} by an attempt to integrate something CAO Finding I_{3} (also probably I_{1} and I_{2}) If ' n 's left in M0 $I_{3} \mathrm{CAO}$	M1 A1 M1 A1 (4)

Question Number		Marks	
(a)		Graph of $y=$	B1
3sinh2x			

Question Number	Scheme	Marks
6. (a)	$\mathbf{n}=(2 \mathbf{j}-\mathbf{k}) \times(3 \mathbf{i}+2 \mathbf{j}+2 \mathbf{k})=6 \mathbf{i}-3 \mathbf{j}-6 \mathbf{k}$ o.a.e. (e.g. $2 \mathbf{i}-\mathbf{j}-2 \mathbf{k})$	M1 A1
(b)	Line l has direction $2 \mathbf{i}-2 \mathbf{j}-\mathbf{k}$ Angle between line l and normal is given by $(\cos \beta$ or $\sin \alpha)=\frac{4+2+2}{\sqrt{9} \sqrt{9}}=\frac{8}{9}$ $\alpha=90-\beta=63$ degrees to nearest degree.	B1 M1 A1ft A1 awrt
(c) Alt 1	Plane P has equation $\mathbf{r} .(2 \mathbf{i}-\mathbf{j}-2 \mathbf{k})=1$ Perpendicular distance is $\frac{1-(-7)}{\sqrt{9}}=\frac{8}{3}$	M1 A1 M1 A1
(c) Alt 2	Parallel plane through A has equation $\mathbf{r} . \frac{2 \mathbf{i}-\mathbf{j}-2 \mathbf{k}}{3}=\frac{-7}{3}$ Plane P has equation $\mathbf{r} \cdot \frac{2 \mathbf{i}-\mathbf{j}-2 \mathbf{k}}{3}=\frac{1}{3}$ So O lies between the two and perpendicular distance is $\frac{1}{3}+\frac{7}{3}=\frac{8}{3}$	M1 A1 M1 A1
(c) Alt 3	Distance A to $(3,1,2)=\sqrt{2^{2}+2^{2}+1^{2}}=3$ Perpendicular distance is ' 3 ' $\sin \alpha=3 \times \frac{8}{9}=\frac{8}{3}$	M1A1 M1A1
(c) Alt 4	Finding Cartesian equation of plane $\mathrm{P}: 2 \mathrm{x}-\mathrm{y}-2 \mathrm{z}-1=0$ $\mathrm{d}=\frac{\left\|n_{1} \alpha+n_{2} \beta+n_{3} \gamma+d\right\|}{\sqrt{n_{1}^{2}+n_{2}^{2}+n_{3}^{2}}}=\frac{\|2(1)-1(3)-2(3)-1\|}{\sqrt{2^{2}+1^{2}+2^{2}}}=\frac{8}{3}$	M1 A1 M1A1
(a) M1 (b) B 1 M1 1A1ft 2A1 (c) 1M1 1A1 2M1 2A1	Notes: Cross product of the correct vectors CAO o.e. CAO Angle between ' $2 \mathbf{i}-\mathbf{j}-2 \mathbf{k}$ ' and $2 \mathbf{i}-2 \mathbf{j}-\mathbf{k}$, formula of correct form 8/9ft CAO awrt Eqn of plane using $2 \mathbf{i}-\mathbf{j}-2 \mathbf{k}$ or dist of A from O or finding length of AP Correct equation (must have $=$) or A to $(3,1,2)=3$ Using correct method to find perpendicular distance CAO	

advancing learning, changing lives

Question Number	Scheme	Marks
8. (a)	Uses $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{\mathrm{d} y}{\mathrm{~d} \theta}}{\frac{\mathrm{~d} x}{\mathrm{~d} \theta}}=\frac{b \cosh \theta}{a \sinh \theta} \quad$ or $\quad \frac{2 x}{a^{2}}-\frac{2 y y^{\prime}}{b^{2}}=0 \rightarrow y^{\prime}=\frac{x b^{2}}{y a^{2}}=\frac{b \cosh \theta}{a \sinh \theta}$ So $y-b \sinh \theta=\frac{b \cosh \theta}{a \sinh \theta}(x-a \cosh \theta)$ $\therefore a b\left(\cosh ^{2} \theta-\sinh ^{2} \theta\right)=x b \cosh \theta-y a \sinh \theta$ and as $\left(\cosh ^{2} \theta-\sinh ^{2} \theta\right)=1$ $x b \cosh \theta-y a \sinh \theta=a b \quad *$	M1 A1 M1 A1cso
(b)	P is the point $\left(\frac{a}{\cosh \theta}, 0\right)$	M1 A1
(c)	l_{2} has equation $x=a$ and meets l_{1} at $\mathrm{Q}\left(a, \frac{b(\cosh \theta-1)}{\sinh \theta}\right)$	M1 A1
(d) Alt 1	The mid point of $P Q$ is given by $X=\frac{a(\cosh \theta+1)}{2 \cosh \theta}, \quad Y=\frac{b(\cosh \theta-1)}{2 \sinh \theta}$ $\begin{aligned} & 4 Y^{2}+b^{2}=b^{2}\left(\frac{\cosh ^{2} \theta+1-2 \cosh \theta+\sinh ^{2} \theta}{\sinh ^{2} \theta}\right) \\ & =b^{2}\left(\frac{2 \cosh ^{2} \theta-2 \cosh \theta}{\sinh ^{2} \theta}\right) \\ & X\left(4 Y^{2}+b^{2}\right)=a b^{2}\left(\frac{(\cosh \theta+1)(\cosh \theta-1) 2 \cosh \theta}{2 \cosh \theta \sinh ^{2} \theta}\right) \end{aligned}$ Simplify fraction by using $\cosh ^{2} \theta-\sinh ^{2} \theta=1$ to give $x\left(4 y^{2}+b^{2}\right)=a b^{2}$	1M1 A1ft 2M1 3 M 1 4 M 1 A1cso
(d) Alt 2	First line of solution as before $\begin{aligned} & 4 Y^{2}+b^{2}=b^{2}\left(\operatorname{coth}^{2} \theta+\operatorname{cosech}^{2} \theta-2 \operatorname{coth} \theta \operatorname{cosech} \theta+1\right) \\ & =b^{2}\left(2 \operatorname{coth}^{2} \theta-2 \operatorname{coth} \theta \operatorname{cosech} \theta\right) \\ & X\left(4 Y^{2}+b^{2}\right)=a b^{2}(\operatorname{coth} \theta(\operatorname{coth} \theta-\operatorname{cosech} \theta)(1+\operatorname{sech} \theta)) \end{aligned}$ Simplify expansion by using $\operatorname{coth}^{2} \theta-\operatorname{cosech}^{2} \theta=1$ to give $x\left(4 y^{2}+b^{2}\right)=a b^{2} *$	1M1A1ft 2M1 3M1 4M1 A1cso

advancing learning, changing lives

J une 2012
 6669 Further Pure Maths FP3
 Mark Scheme

Question Number	Scheme	Marks
1. (a)	Uses formula to obtain $e=\frac{5}{4}$ Uses $a e$ formula Uses other formula $\frac{a}{e}$ Obtains both Foci are $(\pm 5,0)$ and Directrices are $x= \pm \frac{16}{5}$ (needs both method marks)	M1A1
M1 (3)		
A1 cso (2)		
(5 marks)		

Notes

a1M1: Uses $b^{2}=a^{2}\left(e^{2}-1\right)$ to get $e>1$
a1A1: cao
a2M1: Uses ae
b1M1: Uses $\frac{a}{e}$
b1A1: cso for both foci and both directrices. Must have both of the 2 previous M marks may be implicit.

Question Number	Scheme	Marks
2.	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\sinh 3 x$	B1
	so $s=\int \sqrt{1+\sinh ^{2} 3 x} \mathrm{~d} x$	M1
	$\therefore s=\int \cosh 3 x \mathrm{~d} x$	A1
	$=\left[\frac{1}{3} \sinh 3 x\right]_{0}^{\text {na }}$	M1
	$=\frac{1}{3} \sinh 3 \ln a=\frac{1}{6}\left[\mathrm{e}^{3 \ln a}-\mathrm{e}^{-3 \ln a}\right]$	DM1
	$=\frac{1}{6}\left(a^{3}-\frac{1}{a^{3}}\right) \quad(\text { so } k=1 / 6)$	$\begin{aligned} & \text { A1 } \\ & \text { (6 marks) } \end{aligned}$

Notes

1B1: сао
1M1: Use of arc length formula, need both $\sqrt{\text { and }}\left(\frac{d y}{d x}\right)^{2}$.
1A1: $\int \cosh 3 x d x$ cao
2M1: Attempt to integrate, getting a hyperbolic function o.e.
3M1: depends on previous M mark. Correct use of lna and 0 as limits. Must see some exponentials.
2A1: сао

Question Number	Scheme	Marks
3. (a)	$\begin{array}{ll} \text { uиu }=3 \mathbf{i}+6 \mathbf{j}+2 \mathbf{k}, & B C=-3 \mathbf{i}+4 \mathbf{j}+3 \mathbf{k} \\ A \ldots \mathbf{k} \\ A C \times B C=10 \mathbf{i}-15 \mathbf{j}+30 \mathbf{k} & \end{array}$	B1, B1 M1 A1
		(4)
(b)	Area of triangle $A B C=\frac{1}{2}\|10 \mathbf{i}-15 \mathbf{j}+30 \mathbf{k}\|=\frac{1}{2} \sqrt{1225}=17.5$	M1 A1
(c)	Equation of plane is $10 x-15 y+30 z=-20$ or $2 x-3 y+6 z=-4$ So $\mathbf{r} .(2 \mathbf{i}-3 \mathbf{j}+6 \mathbf{k})=-4$ or correct multiple	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & (2) \\ \quad(8 \text { marks) } \end{array}$

Notes

a1B1: \quad AC $=3 \mathbf{i}+6 \mathbf{j}+2 \mathbf{k}$ cao, any form
a2B1: $\quad B C=-3 \mathbf{i}+4 \mathbf{j}+3 \mathbf{k}$ cao, any form
a1M1: Attempt to find cross product, modulus of one term correct.
a1A1: cao, any form.
b1M1: modulus of their answer to (a) - condone missing $1 / 2$ here. To finding area of triangle by correct method.
b1A1: cao.
c1M1: [Using their answer to (a) to] find equation of plane. Look for a.n or b.n or c.n for p. c1A1: cao

Question Number	Scheme	Marks
4(a)	$\begin{aligned} & \quad I_{n}=\left[x^{n}\left(-\frac{1}{2} \cos 2 x\right)\right]_{0}^{\frac{\pi}{4}}-\int_{0}^{\frac{\pi}{4}}-\frac{1}{2} n x^{n-1} \cos 2 x \mathrm{~d} x \\ & \text { so } \\ & I_{n}=\left\langle\left[x^{n}\left(-\frac{1}{2} \cos 2 x\right)\right]_{0}^{\frac{\pi}{4}}\right\rangle+\left[\frac{1}{4} n x^{n-1} \sin 2 x\right]_{0}^{\frac{\pi}{4}}-\int_{0}^{\frac{\pi}{4}} \frac{1}{4} n(n-1) x^{n-2} \sin 2 x \mathrm{~d} x \\ & \text { i.e. } \quad I_{n}=\frac{1}{4} n\left(\frac{\pi}{4}\right)^{n-1}-\frac{1}{4} n(n-1) I_{n-2} * \end{aligned}$	M1 A1 M1 A1 A1cso
(b)	$\begin{aligned} & I_{0}=\int_{0}^{\frac{\pi}{4}} \sin 2 x \mathrm{~d} x=\left[-\frac{1}{2} \cos 2 x\right]_{0}^{\frac{\pi}{4}}=\frac{1}{2} \\ & I_{2}=\frac{1}{4} \times 2 \times\left(\frac{\pi}{4}\right)-\frac{1}{4} \times 2 \times I_{0}, \text { so } I_{2}=\frac{\pi}{8}-\frac{1}{4} \end{aligned}$	M1 A1 M1 A1 (4)
(c)	$I_{4}=\left(\frac{\pi}{4}\right)^{3}-\frac{1}{4} \times 4 \times 3 I_{2}=\frac{\pi^{3}}{64}-3\left(\frac{\pi}{8}-\frac{1}{4}\right)=\frac{1}{64}\left(\pi^{3}-24 \pi+48\right) *$	M1 A1cso (2)

Notes

a1M1: Use of integration by parts, integrating $\sin 2 x$, differentiating x^{n}.
a1A1: cao
a2M1: Second application of integration by parts, integrating $\cos 2 x$, differentiating x^{n-1}.
a2A1: cao
a3A1: cso Including correct use of $\frac{\pi}{4}$ and 0 as limits.
b1M1: Integrating to find I_{0} or setting up parts to find I_{2}.
b1A1: cao (Accept $I_{0}=1 / 2$ here for both marks)
b2M1: Finding I_{2} in terms of π. If ' n ''s left in M0
b2A1: cao
c1M1: Finding I_{4} in terms of I_{2} then in terms of π. If ' n ''s left in M0
c1A1: cso

Question Number	Scheme	Marks
5. (a)	$\operatorname{ar} \sinh 2 x,+x \frac{2}{\sqrt{1+4 x^{2}}}$	M1A1, A1
(b)	$\begin{aligned} \therefore \int_{0}^{\sqrt{2}} \operatorname{arsinh} 2 x \mathrm{~d} x & =[x \operatorname{arsinh} 2 x]_{0}^{\sqrt{2}}-\int_{0}^{\sqrt{2}} \frac{2 x}{\sqrt{1+4 x^{2}}} \mathrm{~d} x \\ & =[x \operatorname{ar} \sinh 2 x]_{0}^{\sqrt{2}}-\left[\frac{1}{2}\left(1+4 x^{2}\right)^{\frac{1}{2}}\right]_{0}^{\sqrt{2}} \\ & =\sqrt{2} \operatorname{arsinh} 2 \sqrt{2}-\left[\frac{3}{2}-\frac{1}{2}\right] \\ & =\sqrt{2} \ln (3+2 \sqrt{2})-1 \end{aligned}$	1M1 1A1ft 2M1 2A1 3DM1 4M1 3A1 (7) (10 marks)

Notes

a1M1: Differentiating getting an arsinh term and a term of the form $\frac{p x}{\sqrt{1 \pm q x^{2}}}$
a1A1: cao $\operatorname{arsinh} 2 x$
a2A1: cao $+\frac{2 x}{\sqrt{1+4 x^{2}}}$
b1M1: rearranging their answer to (a). OR setting up parts
b1A1: ft from their (a) OR setting up parts correctly
b2M1: Integrating getting an arsinh or arcosh term and a $\left(1 \pm a x^{2}\right)^{\frac{1}{2}}$ term o.e..
b2A1: cao
b3DM1: depends on previous M, correct use of $\sqrt{2}$ and 0 as limits.
b4M1: converting to log form.
b3A1: cao depends on all previous M marks.

Question Number	Scheme	Marks
6(a)	$\begin{aligned} & \frac{2 x}{a^{2}}+\frac{2 y}{b^{2}} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \quad \text { and so } \quad \frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{x b^{2}}{y a^{2}}=-\frac{b \cos \theta}{a \sin \theta} \\ & \therefore y-b \sin \theta=-\frac{b \cos \theta}{a \sin \theta}(x-a \cos \theta) \\ & \quad \text { Uses } \cos ^{2} \theta+\sin ^{2} \theta=1 \text { to give } \frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}=1 \end{aligned}$	M1 A1 M1 A1cso (4)
(b)	Gradient of circle is $-\frac{\cos \theta}{\sin \theta}$ and equation of tangent is $y-a \sin \theta=-\frac{\cos \theta}{\sin \theta}(x-a \cos \theta)$ or sets $a=b$ in previous answer So $y \sin \theta+x \cos \theta=a$	M1 A1 (2)
(c)	Eliminate x or y to give $y \sin \theta\left(\frac{a}{b}-1\right)=0$ or $x \cos \theta\left(\frac{b}{a}-1\right)=b-a$ l_{1} and l_{2} meet at $\left(\frac{a}{\cos \theta}, 0\right)$	M1 A1, B1 (3)
(d)	The locus of R is part of the line $y=0$, such that $x \geq a$ and $x \leq-a$ Or clearly labelled sketch. Accept "real axis"	B1, B1 (2) (11 marks)

Notes

a1M1: Finding gradient in terms of θ. Must use calculus.
a1A1: cao
a2M1: Finding equation of tangent
a2A1: cso (answer given). Need to get $\cos ^{2} \theta+\sin ^{2} \theta$ on the same side.
b1M1: Finding gradient and equation of tangent, or setting $a=b$.
b1A1: cao need not be simplified.
c1M1: As scheme
c1A1: $x=\frac{a}{\cos \theta}$, need not be simplified.
c1B1: $y=0$, need not be simplified.
d1B1: Identifying locus as $y=0$ or real/' x ' axis.
d2B1: Depends on previous B mark, identifies correct parts of $y=0$. Condone use of strict inequalities.

Question Number	Scheme	Marks
7(a)	$\begin{aligned} \mathrm{f}(x) & =5 \cosh x-4 \sinh x=5 \times \frac{1}{2}\left(e^{x}+e^{-x}\right)-4 \times \frac{1}{2}\left(e^{x}-e^{-x}\right) \\ & =\frac{1}{2}\left(e^{x}+9 e^{-x}\right) \quad \text { * } \end{aligned}$	M1 A1cso (2)
(b)	$\frac{1}{2}\left(e^{x}+9 e^{-x}\right)=5 \Rightarrow e^{2 x}-10 e^{x}+9=0$ So $e^{x}=9$ or 1 and $x=\ln 9$ or 0	M1 A1 M1 A1 (4)
(c)	Integral may be written $\int \frac{2 e^{x}}{e^{2 x}+9} \mathrm{~d} x$ This is $\frac{2}{3} \arctan \left(\frac{e^{x}}{3}\right)$ Uses limits to give $\left[\frac{2}{3} \arctan 1-\frac{2}{3} \arctan \left(\frac{1}{\sqrt{3}}\right)\right]=\left[\frac{2}{3} \times \frac{\pi}{4}-\frac{2}{3} \times \frac{\pi}{6}\right]=\frac{\pi}{18}{ }^{*}$	B1 M1 A1 DM1 A1cso (5) (11 marks)

Notes

a1M1: Replacing both coshx and $\sinh x$ by terms in e^{x} and e^{-x} condone sign errors here.
a1A1: cso (answer given)
b1M1: Getting a three term quadratic in e^{x}
b1A1: cao
b2M1: solving to $x=$
b2A1: cao need $\ln 9$ (o.e) and $0($ not $\ln 1$)
c1B1: cao getting into suitable form, may substitute first.
c1M1: Integrating to give term in arctan
c1A1: cao
c2M1: Depends on previous M mark. Correct use of $\ln 3$ and $1 / 2 \ln 3$ as limits.
c2A1: cso must see them subtracting two terms in π.

Question Number	Scheme	Marks
8. (a)	$\left\|\begin{array}{ccc} 2-\lambda & 1 & 0 \\ 1 & 2-\lambda & 0 \\ -1 & 0 & 4-\lambda \end{array}\right\|=0 \therefore(2-\lambda)(2-\lambda)(4-\lambda)-(4-\lambda)=0$	M1
	$\begin{aligned} & (4-\lambda)=0 \text { verifies } \lambda=4 \text { is an eigenvalue (can be seen anywhere) } \\ & \therefore(4-\lambda)\left\{4-4 \lambda+\lambda^{2}-1\right\}=0 \therefore(4-\lambda)\left\{\lambda^{2}-4 \lambda+3\right\}=0 \end{aligned}$	M1 A1
	$\therefore(4-\lambda)(\lambda-1)(\lambda-3)=0$ and 3 and 1 are the other two eigenvalues	M1 A1 (5)
(b)	$\operatorname{Set}\left(\begin{array}{ccc}2 & 1 & 0 \\ 1 & 2 & 0 \\ -1 & 0 & 4\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=4\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ or $\left(\begin{array}{ccc}-2 & 1 & 0 \\ 1 & -2 & 0 \\ -1 & 0 & 0\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$	M1
	Solve $-2 x+y=0$ and $x-2 y=0$ and $-x=0$ to obtain $x=0, y=0$, $z=k$ Obtain eigenvector as \mathbf{k} (or multiple)	M1 A1
(c)	l_{1} has equation which may be written $\left(\begin{array}{c}3+\lambda \\ 2-\lambda \\ -2+2 \lambda\end{array}\right)$ So l_{2} is given by $\mathbf{r}=\left(\begin{array}{lll}2 & 1 & 0 \\ 1 & 2 & 0 \\ -1 & 0 & 4\end{array}\right)\left(\begin{array}{c}3+\lambda \\ 2-\lambda \\ -2+2 \lambda\end{array}\right)$ i.e. $\mathbf{r}=\left(\begin{array}{c}8+\lambda \\ 7-\lambda \\ -11+7 \lambda\end{array}\right)$ So $(\mathbf{r}-\mathbf{c}) \times \mathbf{d}=\mathbf{0}$ where $\mathbf{c}=8 \mathbf{i}+7 \mathbf{j}-11 \mathbf{k}$ and $\mathbf{d}=\mathbf{i}-\mathbf{j}+7 \mathbf{k}$	B1
		M1
		M1 A1
		A1ft (5) (13 marks)

Notes

a1M1: Condone missing $=0$. (They might expand the determinant using any row or column)
a2M1: Shows $\lambda=4$ is an eigenvalue. Some working needed need to see $=0$ at some stage.
a1A1: Three term quadratic factor cao, may be implicit (this A depends on $1^{\text {st }} \mathrm{M}$ only)
a2M1: Attempt at factorisation (usual rules), solving to $\lambda=$.
a2A1: cao. If they state $\lambda=1$ and 3 please give the marks.
b1M1: Using $\mathrm{A} \boldsymbol{x}=4 \boldsymbol{x}$ o.e.
b2M1: Getting a pair of correct equations.
b1A1: cao
c1B1: Using \mathbf{a} and \mathbf{b}.
c1M1: Using $r=M x$ their matrix in \mathbf{a} and \mathbf{b}.
c2M1: Getting an expression for l_{2} with at least one component correct.
c1A1: cao all three components correct
c2A1ft: ft their vector, must have $\mathbf{r}=$ or $(\mathbf{r}-\mathbf{c}) \mathbf{x ~ d}=0$ need both equation and r .

edexcel 쁯

Mark Scheme (Results)

Summer 2013

GCE Further Pure Mathematics 3 (6669/01R)

Question Number	Scheme		Marks
	Foci ($\pm 5,0$), Directrices $x= \pm \frac{9}{5}$		
1.	$(\pm) a e=(\pm) 5$ and $(\pm) \frac{a}{e}=(\pm) \frac{9}{5}$	Correct equations (ignore \pm 's)	B1
	so $e=\frac{5}{a} \Rightarrow \frac{a^{2}}{5}=\frac{9}{5} \Rightarrow a^{2}=9$	M1: Solves using an appropriate method to find a^{2} or a	M1A1
	or $a=\frac{-}{e} \Rightarrow \frac{5}{e^{2}}=\frac{9}{5} \Rightarrow e=\frac{5}{3} \Rightarrow a=3$	A1: $a^{2}=9$ or $a=(\pm) 3$	
	$\begin{aligned} & b^{2}=a^{2} e^{2}-a^{2} \Rightarrow b^{2}=25-9 \text { so } \\ & b^{2}=16 \quad(\Rightarrow b=4) \\ & \text { or } b^{2}=a^{2}\left(e^{2}-1\right) \Rightarrow b^{2}=9\left(\frac{25}{9}-1\right) \\ & b^{2}=16 \quad(\Rightarrow b=4) \end{aligned}$	M1: Use of $b^{2}=a^{2}\left(e^{2}-1\right)$ to obtain a numerical value for b^{2} or b	M1 A1
		A1: : $b^{2}=16$ or $b=(\pm) 4$	
	So $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$	M1:Use of $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ with their a^{2} and b^{2}	M1 A1
		A1: Correct hyperbola in any form.	
			(7)

Question	Scheme		Mar
2.(a)	$l_{1}:(\mathbf{i}-\mathbf{j}+\mathbf{k})+\lambda(4 \mathbf{i}+3 \mathbf{j}+2 \mathbf{k})$	$l_{2}:(3 \mathbf{i}+7 \mathbf{j}+2 \mathbf{k})+\lambda(-4 \mathbf{i}+6 \mathbf{j}+\mathbf{k})$	
	$\mathbf{n}=\left\|\begin{array}{rrr} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 4 & 3 & 2 \\ -4 & 6 & 1 \end{array}\right\|=-9 \mathbf{i}-12 \mathbf{j}+36 \mathbf{k}$	M1: Correct attempt at a vector product between $4 \mathbf{i}+3 \mathbf{j}+2 \mathbf{k}$ and $-4 \mathbf{i}+6 \mathbf{j}+\mathbf{k}$ (if the method is unclear then 2 components must be correct) allowing for the sign error in the y component.	M1A1
		A1: Any multiple of ($3 \mathbf{i}+4 \mathbf{j}-12 \mathbf{k}$)	
			(2)
(b) Way 1	$\mathrm{a}_{1}-\mathrm{a}_{2}= \pm(2 i+8 j+k)$	M1: Attempt to subtract position vectors A1: Correct vector $\pm(\mathbf{2 i}+\mathbf{8} \mathbf{j}+\mathbf{k})$ (Allow as coordinates)	M1 A1
	$\text { So } p=\frac{\left(\begin{array}{l} 2 \\ 8 \\ 1 \end{array}\right) \cdot\left(\begin{array}{c} -9 \\ -12 \\ 36 \end{array}\right)}{\sqrt{9^{2}+12^{2}+36^{2}}}$	Correct formula for the distance using their vectors: $\frac{ \pm \pm(2 \mathbf{i}+\mathbf{8} \mathbf{j}+\mathbf{k}) " \cdot " \mathbf{n "}}{\|" n "\|}$	M1
	$p=\frac{ \pm 78}{\sqrt{1521}}=\frac{ \pm 78}{39}=2$	M1: Correctly forms a scalar product in the numerator and Pythagoras in the denominator. (Dependent on the previous method mark)	dM1 A1
		A1: 2 (not-2)	
			(5)
(b) Way 2	$\begin{aligned} & (\mathbf{i}-\mathbf{j}+\mathbf{k}) \bullet(3 \mathbf{i}+4 \mathbf{j}-12 \mathbf{k})=-13\left(d_{1}\right) \\ & (3 \mathbf{i}+7 \mathbf{j}+2 \mathbf{k}) \bullet(3 \mathbf{i}+4 \mathbf{j}-12 \mathbf{k})=13\left(d_{2}\right) \end{aligned}$	M1: Attempt scalar product between their \mathbf{n} and either position vector A1: Both scalar products correct	M1A1
	$\frac{ \pm 13}{\sqrt{3^{2}+4^{2}+12^{2}}}(=1)$	Divides either of their scalar products by the magnitude of their normal vector. $\frac{d_{1} \text { or } d_{2}}{\|" \mathbf{n} "\|}$	M1
	$p=\frac{d_{1}}{\left\|\mathbf{n n}^{n}\right\|}-\frac{d_{2}}{\left\|\mathbf{n}^{n}\right\|} \text { or } 2 \times \frac{d_{1}}{\|" \mathbf{n} "\|}$	M1: Correct attempt to find the required distance i.e. subtracts their $\frac{d_{1}}{\|" \mathbf{n} "\|}$ and $\frac{d_{2}}{\|" \mathbf{n} "\|}$ or doubles their $\frac{d_{1}}{\|" \mathbf{n} "\|}$ if $\left\|d_{1}\right\|=\left\|d_{2}\right\|$. (Dependent on the previous method mark) $\text { A1: } 2 \text { (not -2) }$	dM1 A1
			(5)
			Total 7

Question Number	Scheme		Marks
4.	$\left(\begin{array}{rrr}2 & 0 & 3 \\ 0 & 2 & -1 \\ 0 & 1 & 2\end{array}\right)\left(\begin{array}{c}1+s+t \\ -1+s+2 t \\ 2\end{array}\right)$	M1: Writes Π_{1} as a single vector A1: Correct statement	M1A1
	$\left(\begin{array}{rrr}2 & 0 & 3 \\ 0 & 2 & -1 \\ 0 & 1 & 2\end{array}\right)\left(\begin{array}{c}1+s+t \\ -1+s+2 t \\ 2\end{array}-2 t\right)=$	$=\left(\begin{array}{l}2+2 s+2 t+6-6 t \\ -2+2 s+4 t-2+2 t \\ -1+s+2 t+4-4 t\end{array}\right)$	M1A1
	M1: Correct attempt to multiply A1: Correct vector in any form		
	$=\left(\begin{array}{l}8+2 s-4 t \\ -4+2 s+6 t \\ 3+s-2 t\end{array}\right)$	Correct simplified vector	B1
	$\mathbf{r}=\left(\begin{array}{r}8 \\ -4 \\ 3\end{array}\right)+s\left(\begin{array}{l}2 \\ 2 \\ 1\end{array}\right)+t\left(\begin{array}{r}-4 \\ 6 \\ -2\end{array}\right)$		
	$\mathbf{n}=\left\|\begin{array}{rrc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 2 & 1 \\ -4 & 6 & -2\end{array}\right\|=-10 \mathbf{i}+20 \mathbf{k}$	M1: Attempts cross product of their direction vectors	M1A1
		A1: Any multiple of $-10 \mathbf{i}+20 \mathbf{k}$	
	$\mathbf{(8 i} \mathbf{- 4} \mathbf{j}+\mathbf{3 k}) . \mathbf{(i}-\mathbf{2 k})=8-6$	Attempt scalar product of their normal vector with their position vector	M1
	r. $(\mathbf{i}-\mathbf{2 k})=2$	Correct equation (accept any correct equivalent $\text { e.g. } \mathbf{r}(-10 \mathbf{i}+20 \mathbf{k})=-20)$	A1
			(9)

Question Number	Scheme		Marks
5(a)	$I_{n}=\left[x^{n}(2 x-1)^{\frac{1}{2}}\right]_{1}^{5}-\int_{1}^{5} n x^{n-1}(2 x-1)^{\frac{1}{2}} \mathrm{~d} x$	M1: Parts in the correct direction including a valid attempt to integrate $(2 x-1)^{-\frac{1}{2}}$	M1 A1
		A1: Fully correct application - may be un-simplified. (Ignore limits)	
	$I_{n}=\underline{5^{n} \times 3-1}-\int_{1}^{5} n x^{n-1} \underline{(2 x-1)(2 x-1)^{-\frac{1}{2}} \mathrm{~d}}$ x	Obtains a correct (possibly un-simplified) expression using the limits 5 and 1 and writes $(2 x-1)^{\frac{1}{2}} \text { as }(2 x-1)(2 x-1)^{-\frac{1}{2}}$	B1
	$I_{n}=5^{n} \times 3-1-2 n I_{n}+n I_{n-1}$	Replaces $\int x^{n}(2 x-1)^{-\frac{1}{2}} \mathrm{~d} x \text { with } I_{n}$ and $\int x^{n-1}(2 x-1)^{-\frac{1}{2}} \mathrm{~d} x$ with I_{n-1}	dM1
	$(2 n+1) I_{n}=n I_{n-1}+3 \times 5^{n}-1 *$	Correct completion to printed answer with no errors seen	A1cso
			(5)
(b)	$I_{0}=\int_{1}^{5}(2 x-1)^{-\frac{1}{2}} \mathrm{~d} x=\left[(2 x-1)^{\frac{1}{2}}\right]_{1}^{5}=2$	$I_{0}=2$	B1
	$5 I_{2}=2 I_{1}+74$ and $3 I_{1}=I_{0}+14$	M1: Correctly applies the given reduction formula twice	M1 A1
		A1: Correct equations for I_{2} and I_{1} (may be implied)	
	So $I_{1}=\frac{16}{3}$ and $I_{2}=\ldots$ or $5 I_{2}=2 \frac{I_{0}+14}{3}+74$ and $I_{2}=\ldots$	Completes to obtains a numerical expression for I_{2}	dM1
	$I_{2}=\frac{254}{15}$		B1
			(5)
			Total 10

Question Number	Scheme		Marks
6. (a)	$\left(\begin{array}{lll}4 & 2 & 3 \\ 2 & b & 0 \\ a & 1 & 8\end{array}\right)\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)=\left(\begin{array}{c}8 \\ \ldots \\ \ldots\end{array}\right),=\lambda\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right), \lambda=8$	M1: Multiplies the given matrix by the given eigenvector	M1, M1, A1
		M1: Equates the x value to λ	
		A1: $\lambda=8$	
			(3)
(b)	$\left(\begin{array}{c}8 \\ 2+2 b \\ a+2\end{array}\right)=" 8$ " $\left.\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)$ So $a=-2$ and $b=7$	M1: Their $2+2 b=2 \lambda$ or their $a+2=0$	M1 A1 A1
		A1: $b=7$ or $a=-2$	
		A1: $b=7$ and $a=-2$	
			(3)
(c)	$\begin{aligned} & \left\|\begin{array}{lcc} 4-\lambda & 2 & 3 \\ 2 & 7-\lambda & 0 \\ -2 & 1 & 8-\lambda \end{array}\right\|=0 \\ & \therefore(4-\lambda)(7-\lambda)(8-\lambda)-2 \times 2(8-\lambda)+3(2+2(7-\lambda))=0 \end{aligned}$		M1
	Correct attempt to establish the Characteristic Equation. $=0$ is required but may be implied by later work Allow this mark if the equation is in terms of $\mathbf{a}, \mathbf{b}, \mathbf{c}$		
	Attempts to factorise i.e. $(8-\lambda)\left(30-11 \lambda+\lambda^{2}\right)$ or $(6-\lambda)\left(40-13 \lambda+\lambda^{2}\right)$ or $(5-\lambda)\left(48-14 \lambda+\lambda^{2}\right)\left(\right.$ NB $\left.240-118 \lambda+19 \lambda^{2}-\lambda^{3}=0\right)$		M1 A1
	M1: Attempt to factorise their cubic - an attempt to identify a linear factor and processes to obtain a simplified quadratic factor A1: Correct factorisation into one linear and one quadratic factor		
	Eigenvalues are 5 and 6	M1: Solves their equation to obtain the other eigenvalues A1: 5 and 6	M1 A1
			(5)
			Total 8

Question Number	Scheme		Marks
7(a)	Put $6 \cosh x=9-2 \sinh x$		M1
	$6 \times \frac{1}{2}\left(e^{x}+e^{-x}\right)=9-2 \times \frac{1}{2}\left(e^{x}-e^{-x}\right)$	Replaces $\cosh x$ and $\sinh x$ by the correct exponential forms	M1
	$4 e^{x}+2 e^{-x}-9=0 \Rightarrow 4 e^{2 x}-9 e^{x}+2=0$	M1: Multiplies by e^{x}	M1 A1
		A1: Correct quadratic in e^{x} in any form with terms collected	
	So $e^{x}=\frac{1}{4}$ or 2 and $x=\ln 2$ or $\ln \frac{1}{4}$	M1: Solves their quadratic in e^{x}	M1 A1
		A1: Correct values of x (Any correct equivalent form)	
			(6)
(b)	Area is $\int(9-2 \sinh x-6 \cosh x) \mathrm{d} x$	$\begin{aligned} & \int(9-2 \sinh x-6 \cosh x) \mathrm{d} x \text { or } \\ & \int(6 \cosh x-(9-2 \sinh x)) \mathrm{d} x \end{aligned}$ or the equivalent in exponential form	M1
	$\pm(9 x-2 \cosh x-6 \sinh x)$ or	M1: Attempt to integrate	M1 A1
	$\pm\left(9 x-4 \mathrm{e}^{x}+2 \mathrm{e}^{-x}\right)$	A1: Correct integration	
	$\pm\left([9 \ln 2-2 \cosh \ln 2-6 \sinh \ln 2]-\left[9 \ln \frac{1}{4}-2 \cosh \ln \frac{1}{4}-6 \sinh \ln \frac{1}{4}\right]\right)$		dM1
	Complete substitution of their limits from part (a). Depends on both previous M's		
	$= \pm\left(9 \ln \left(2 \div \frac{1}{4}\right)-\left(e^{\ln 2}+\mathrm{e}^{-\ln 2}\right)-3\left(\mathrm{e}^{\ln 2}-\mathrm{e}^{-\ln 2}\right)+\left(\mathrm{e}^{\ln \frac{1}{4}}+\mathrm{e}^{-\ln \frac{1}{4}}\right)+3\left(\mathrm{e}^{\ln \frac{1}{4}}-\mathrm{e}^{-\ln \frac{1}{4}}\right)\right)$		M1
	Combines logs correctly and uses cosh and sinh of ln correctly at least once		
	$\left(9 \ln 8-\frac{5}{2}-\frac{18}{4}+4.25-11.25\right)=9 \ln 8-14 \text { or } 27 \ln 2-14$ Any correct equivalent		A1cao
	Subtracting the wrong way round could score 5/6 max		
			(6)
			Total 12
	Note If they use $4 e^{2 x}-9 e^{x}+2$ in (b) to find the area - no marks		

edexcel

Mark Scheme (Results)

Summer 2013

GCE Further Pure Mathematics 3 (6669/01)

Question Number	Scheme	Marks
2. (a)	$k \operatorname{arsinh}\left(\frac{2 x}{3}\right)(+c) \quad$ or $\quad k \ln \left[p x+\sqrt{\left(p^{2} x^{2}+\frac{9}{4} p^{2}\right)}\right](+c)$	M1
	$\frac{1}{2} \operatorname{arsinh}\left(\frac{2 x}{3}\right)(+c) \quad$ or $\frac{1}{2} \ln \left[p x+\sqrt{\left(p^{2} x^{2}+\frac{9}{4} p^{2}\right)}\right](+c)$	A1
		(2)
(b)	So: $\frac{1}{2} \ln [6+\sqrt{45}]-\frac{1}{2} \ln [-6+\sqrt{45}]=\frac{1}{2} \ln \left[\frac{6+\sqrt{45}}{-6+\sqrt{45}}\right]$	M1
	Uses correct limits and combines logs	
	$=\frac{1}{2} \ln \left[\frac{6+\sqrt{45}}{-6+\sqrt{45}}\right]\left[\frac{6+\sqrt{45}}{6+\sqrt{45}}\right]=\frac{1}{2} \ln \left[\frac{(6+\sqrt{45})^{2}}{9}\right]$	M1
	Correct method to rationalise denominator (may be implied) Method must be clear if answer does not follow their fraction	
	$=\ln [2+\sqrt{5}] \quad$ or $\left.\frac{1}{2} \ln [9+4 \sqrt{5}]\right)$	A1cso
	Note that the last 3 marks can be scored without the need to rationalise e.g. $2 \times \frac{1}{2}\left[\ln \left[2 x+\sqrt{\left(4 x^{2}+9\right)}\right]\right]_{0}^{3}=\ln (6+\sqrt{45})-\ln 3=\ln \left(\frac{6+\sqrt{45}}{3}\right)$ M1: Uses the limits 0 and 3 and doubles M1: Combines Logs A1: $\ln [2+\sqrt{5}]$ oe	
		(3)
		Total 5
Alternative for (a)	$x=\frac{3}{2} \sinh u \Rightarrow \int \frac{1}{\sqrt{9 \sinh ^{2} u+9}} \cdot \frac{3}{2} \cosh u \mathrm{~d} u=k \operatorname{arsinh}\left(\frac{2 x}{3}\right)(+c)$	M1
	$\frac{1}{2} \operatorname{arsinh}\left(\frac{2 x}{3}\right)(+c)$	A1
Alternative for (b)	$\left[\frac{1}{2} \operatorname{arsinh}\left(\frac{2 x}{3}\right)\right]_{-3}^{3}=\frac{1}{2} \operatorname{arsinh} 2-\frac{1}{2} \operatorname{arsinh}-2$	
	$\frac{1}{2} \ln (2+\sqrt{5})-\frac{1}{2} \ln (\sqrt{5}-2)=\frac{1}{2} \ln \left(\frac{2+\sqrt{5}}{\sqrt{5}-2}\right)$	M1
	Uses correct limits and combines logs	
	$=\frac{1}{2} \ln \left(\frac{2+\sqrt{5}}{\sqrt{5}-2} \cdot \frac{\sqrt{5}+2}{\sqrt{5}+2}\right)=\frac{1}{2} \ln \left(\frac{2 \sqrt{5}+4+5+2 \sqrt{5}}{5-4}\right)$	M1
	Correct method to rationalise denominator (may be implied) Method must be clear if answer does not follow their fraction	
	$=\frac{1}{2} \ln [9+4 \sqrt{5}]$	A1cso

Question Number	Scheme		Marks
4.	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{40}{\sqrt{\left(x^{2}-1\right)}}-9$	M1: $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{p}{\sqrt{\left(x^{2}-1\right)}}-q$	M1 A1
		A1: Cao	
	Put $\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathbf{0}$ and obtain $x^{2}=\ldots$. (Allow sign errors only)	e.g. $\left(\frac{1681}{81}\right)$	dM1
		M1: Square root	
	$x=\frac{41}{9}$	A1: $x=\frac{41}{9}$ or exact equivalent $\left(\operatorname{not} \pm \frac{41}{9}\right)$	M1 A1
	$y=40 \ln \left\{\left(\frac{41}{9}\right)+\sqrt{\left(\frac{41}{9}\right)^{2}-1}\right\}-441 "$	Substitutes $x=" \frac{41}{9}$ " into the curve and uses the logarithmic form of arcosh	M1
	So $y=80 \ln 3-41$	Cao	A1
			Total 7

Question Number	Scheme			Marks
(b)	$I_{1}=\int_{0}^{4} x \sqrt{\left(16-x^{2}\right)} \mathrm{d} x=\left[-\frac{1}{3}\left(16-x^{2}\right)^{\frac{3}{2}}\right]_{0}^{4}=\frac{64}{3}$		M1: Correct integration to find I_{1} A1: $\frac{64}{3}$ or equivalent (May be implied by a later work - they are not asked explicitly for I_{1})	M1 A1
	$\frac{64}{3}$ must come from correct work			
	$\begin{gathered} \text { Using } x=4 \sin \theta: \\ I_{1}=\int_{0}^{\frac{\pi}{2}} 4 \sin \theta \sqrt{\left(16-16 \sin ^{2} \theta\right)} 4 \cos \theta \mathrm{~d} \theta=\int_{0}^{\frac{\pi}{2}} 64 \sin \theta \cos ^{2} \theta \mathrm{~d} \theta \\ =\left[-\frac{64}{3} \cos ^{3} \theta\right]_{0}^{\frac{\pi}{2}} \end{gathered}$ M1: A complete substitution and attempt to substitute changed limits A1: $\frac{64}{3}$ or equivalent			
	$I_{5}=\frac{64}{7} I_{3}, I_{3}=\frac{32}{5} I_{1}$	Applies to apply reduction formula twice. First M1 for I_{5} in terms of I_{3}, second M1 for I_{3} in terms of I_{1} (Can be implied)		M1, M1
	$I_{5}=\frac{131072}{105}$	Any exact equivalent (Depends on all previous marks having been scored)		A1
				(5)
				Total 11

Question	Scheme		Marks
8(a)	$(\mathbf{6 i}+\mathbf{2} \mathbf{j}+12 \mathbf{k}) \cdot(3 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k})=34$	Attempt scalar product	M1
	$\left\|\frac{(\mathbf{6 i}+\mathbf{2} \mathbf{j}+\mathbf{1 2 k}) \cdot(\mathbf{3 i}-4 \mathbf{j}+2 \mathbf{k})-5}{\sqrt{3^{2}+4^{2}+2^{2}}}\right\|$	Use of correct formula	M1
	$\sqrt{29}($ not $-\sqrt{29})$	Correct distance (Allow 29/ $\sqrt{29}$)	A1
			(3)
(a) Way 2	$\therefore 6+3 \lambda 3+2-4 \lambda-4+12+2 \lambda 2=5$		M1
	Substitutes the parametric coordinates of the line through $(6,2,12)$ perpendicular to the plane into the cartesian equation.		
	$\lambda=-1 \Rightarrow 3,6,10$ or $-3 \mathbf{i}+4 \mathbf{j}-2 \mathbf{k}$	Solves for λ to obtain the required point or vector.	M1
	$\sqrt{29}$	Correct distance	A1
(a) Way 3	$\begin{aligned} & \text { Parallel plane containing }(6,2,12) \text { is } \\ & \quad \mathbf{r} .(3 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k})=34 \\ & \quad \Rightarrow \frac{\mathbf{r} \cdot(3 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k})}{\sqrt{29}}=\frac{34}{\sqrt{29}} \end{aligned}$	Origin to this plane is $\frac{34}{\sqrt{29}}$	M1
	$\Rightarrow \frac{\mathbf{r} \cdot(3 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k})}{\sqrt{29}}=\frac{5}{\sqrt{29}}$	Origin to plane is $\frac{5}{\sqrt{29}}$	M1
	$\frac{34}{\sqrt{29}}-\frac{5}{\sqrt{29}}=\sqrt{29}$	Correct distance	A1
(b) For a cross product, if the method is unclear, 2 out of 3 components should be correct for M1	$\left\|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & 5\end{array}\right\|=\binom{3}{9}$	M1: Attempts $(2 \mathbf{i}+1 \mathbf{j}+5 \mathbf{k}) \times(\mathbf{i}-\mathbf{j}-2 \mathbf{k})$	M1A1
	$\|1-1-2\|(-3)$	A1: Any multiple of $\mathbf{i}+\mathbf{3 j} \mathbf{- k}$	
	$(\cos \theta)=\frac{(\mathbf{3 i} \mathbf{- 4} \mathbf{j}+\mathbf{2 k}) \cdot \mathbf{(\mathbf { i } + \mathbf { 3 } \mathbf { j } - \mathbf { k })}}{\sqrt{3^{2}+4^{2}+2^{2}} \sqrt{1^{2}+3^{2}+1^{2}}} \quad\left(=\frac{-11}{\sqrt{29} \sqrt{11}}\right)$		M1
	Attempts scalar product of normal vectors including magnitudes		
	52	Obtains angle using arccos (dependent on previous M1)	dM1 A1
	Do not isw and mark the final answer e.g. 90-52 $=38$ loses the A1		(5)
(c)	$\left\|\begin{array}{rrr}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 3 & -1\end{array}\right\|=\binom{2}{-5}$	M1: Attempt cross product of normal vectors	M1A1
	$\|3-4 \quad 2\|$ (-13)	A1: Correct vector	
	$x=0:\left(0, \frac{5}{2}, \frac{15}{2}\right), y=0:(1,0,1), z=0:\left(\frac{15}{13}, \frac{-5}{13}, 0\right)$		M1A1
	M1: Valid attempt at a point on both planes. A1: Correct coordinates May use way 3 to find a point on the line		
	$r \times(-2 i+5 j+13 k)=-5 i-15 j+5 k$	M1: $\mathbf{r} \times$ dir $=$ pos.vector $\times \operatorname{dir}(\mathbf{T h i s}$ way round)	M1A1
		A1: Correct equation	
			(6)

Question Number	Scheme		Marks
(c) $\text { Way } 2$	" $x+3 y-z=0$ " and $3 x-4 y+2 z=5$ uses their cartesian form of and eliminate x, or y or z and substitutes back to obtain two of the variables in terms of the third		M1
	$\begin{aligned} & \left(x=1-\frac{2}{5} y \text { and } z=1+\frac{13}{5} y\right) \text { or }\left(y=\frac{5 z-5}{13} \text { and } x=\frac{15-2 z}{13}\right) \text { or } \\ & \left(y=\frac{5-5 x}{2} \text { and } z=\frac{15-13 x}{2}\right) \end{aligned}$		A1
	$x=\frac{y-\frac{5}{2}}{-\frac{5}{2}}=\frac{z-\frac{15}{2}}{-\frac{13}{2}} \text { or } \frac{x-1}{-\frac{2}{5}}=y=\frac{z-1}{\frac{13}{5}} \text { or } \frac{x-\frac{15}{13}}{-\frac{2}{13}}=\frac{y+\frac{5}{13}}{\frac{5}{13}}=z$		
	Points and Directions: Direction can be any multiple $\left(0, \frac{5}{2}, \frac{15}{2}\right), \mathbf{i}-\frac{5}{2} \mathbf{j}-\frac{13}{2} \mathbf{k}$ or $(1,0,1),-\frac{2}{5} \mathbf{i}+\mathbf{j}+\frac{13}{5} \mathbf{k}$ or $\left(\frac{15}{13},-\frac{5}{13}, 0\right),-\frac{2}{13} \mathbf{i}+\frac{5}{13} \mathbf{j}+\mathbf{k}$		M1 A1
	M1:Uses their Cartesian equations correctly to obtain a point and direction A1: Correct point and direction - it may not be clear which is which i.e. look for the correct numbers either as points or vectors		
	Equation of line in required form: e.g. $\mathbf{r} \times(-2 i+5 j+13 k)=-5 i-15 j+5 k$ Or Equivalent		M1 A1
			(6)
			Total 14
(c) Way 3	$\left(\begin{array}{c} 2 \lambda+\mu \\ \lambda-\mu \\ 5 \lambda-2 \mu \end{array}\right) \cdot\left(\begin{array}{r} 3 \\ -4 \\ 2 \end{array}\right)=5 \Rightarrow 12 \lambda+3 \mu=5$	M1: Substitutes parametric form of Π_{2} into the vector equation of Π_{1} A1: Correct equation	M1A1
	$\begin{aligned} & \mu=\frac{5}{3}, \lambda=0 \operatorname{gives}\left(\frac{5}{3},-\frac{5}{3}, \frac{10}{3}\right) \\ & \mu=0, \lambda=\frac{5}{12} \operatorname{gives}\left(\frac{5}{6}, \frac{5}{12}, \frac{25}{12}\right) \\ & \text { Direction }\left(\begin{array}{c} -2 \\ 5 \\ 13 \end{array}\right) \end{aligned}$	M1: Finds 2 points and direction A1: Correct coordinates and direction	M1A1
	Equation of line in required form: e.g. $r \times(-2 i+5 j+13 k)=-5 i-15 j+5 k$ Or Equivalent		M1A1
	Do not allow 'mixed' methods - mark the best single attempt		
	NB for checking, a general point on the line will be of the form:$(1-2 \lambda, 5 \lambda, 1+13 \lambda)$		

