

General Certificate of Education Advanced Subsidiary Examination January 2013

Mathematics

Unit Pure Core 2

Monday 14 January 20139.00 am to 10.30 am

For this paper you must have：

－the blue AQA booklet of formulae and statistical tables．
You may use a graphics calculator．

Time allowed

－ 1 hour 30 minutes

Instructions

－Use black ink or black ball－point pen．Pencil should only be used for drawing．
－Fill in the boxes at the top of this page．
－Answer all questions．
－Write the question part reference（eg（a），（b）（i）etc）in the left－hand margin．
－You must answer each question in the space provided for that question．If you require extra space，use an AQA supplementary answer book；do not use the space provided for a different question．
－Do not write outside the box around each page．
－Show all necessary working；otherwise marks for method may be lost．
－Do all rough work in this book．Cross through any work that you do not want to be marked．

Information

－The marks for questions are shown in brackets．
－The maximum mark for this paper is 75 ．

Advice

－Unless stated otherwise，you may quote formulae，without proof，from the booklet．
－You do not necessarily need to use all the space provided．

1 The diagram shows a sector $O A B$ of a circle with centre O and radius $r \mathrm{~cm}$ ．

The angle $A O B$ is 1.25 radians．The perimeter of the sector is 39 cm ．
（a）Show that $r=12$ ．
（b）Calculate the area of the sector $O A B$ ．

2 （a）Use the trapezium rule with five ordinates（four strips）to find an approximate value for

$$
\int_{1}^{5} \frac{1}{x^{2}+1} \mathrm{~d} x
$$

giving your answer to three significant figures．
（b）（i）Find $\int\left(x^{-\frac{3}{2}}+6 x^{\frac{1}{2}}\right) \mathrm{d} x$ ，giving the coefficient of each term in its simplest form．
（ii）Hence find the value of $\int_{1}^{4}\left(x^{-\frac{3}{2}}+6 x^{\frac{1}{2}}\right) \mathrm{d} x$ ．
（2 marks）

3 The diagram shows a triangle $A B C$ ．

The lengths of $A C$ and $B C$ are 5 cm and 6 cm respectively．
The area of triangle $A B C$ is $12.5 \mathrm{~cm}^{2}$ ，and angle $A C B$ is obtuse．
（a）Find the size of angle $A C B$ ，giving your answer to the nearest 0.1° ．
（b）Find the length of $A B$ ，giving your answer to two significant figures．

4 Given that

$$
\log _{a} N-\log _{a} x=\frac{3}{2}
$$

express x in terms of a and N ，giving your answer in a form not involving logarithms．

5 The point $P(2,8)$ lies on a curve，and the point M is the only stationary point of the curve．

The curve has equation $y=6+2 x-\frac{8}{x^{2}}$ ．
（a）Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ ．
（b）Show that the normal to the curve at the point $P(2,8)$ has equation $x+4 y=34$ ．
（c）（i）Show that the stationary point M lies on the x－axis．
（ii）Hence write down the equation of the tangent to the curve at M ．
（d）The tangent to the curve at M and the normal to the curve at P intersect at the point T ．Find the coordinates of T ．

6 （a）A geometric series begins $420+294+205.8+\ldots$.
（i）Show that the common ratio of the series is 0.7 ．
（ii）Find the sum to infinity of the series．
（iii）Write the nth term of the series in the form $p \times q^{n}$ ，where p and q are constants．
（b）The first term of an arithmetic series is 240 and the common difference of the series is -8 ．

The nth term of the series is u_{n} ．
（i）Write down an expression for u_{n} ．
（ii）Given that $u_{k}=0$ ，find the value of $\sum_{n=1}^{k} u_{n}$ ．

7 （a）Describe a geometrical transformation that maps the graph of $y=4^{x}$ onto the graph of $y=3 \times 4^{x}$ ．
（2 marks）
（b）Sketch the curve with equation $y=3 \times 4^{x}$ ，indicating the value of the intercept on the y－axis．
（c）The curve with equation $y=4^{-x}$ intersects the curve $y=3 \times 4^{x}$ at the point P ． Use logarithms to find the x－coordinate of P ，giving your answer to three significant figures．
（5 marks）

8 （a）Expand $\left(1+\frac{4}{x}\right)^{2}$.
（1 mark）
（b）The first four terms of the binomial expansion of $\left(1+\frac{x}{4}\right)^{8}$ in ascending powers of x are $1+a x+b x^{2}+c x^{3}$ ．Find the values of the constants a, b and c ．（4 marks）
（c）Hence find the coefficient of x in the expansion of $\left(1+\frac{4}{x}\right)^{2}\left(1+\frac{x}{4}\right)^{8} \cdot \quad(4$ marks）

9 （a）Write down the two solutions of the equation $\tan \left(x+30^{\circ}\right)=\tan 79^{\circ}$ in the interval $0^{\circ} \leqslant x \leqslant 360^{\circ}$ ．
（b）Describe a single geometrical transformation that maps the graph of $y=\tan x$ onto the graph of $y=\tan \left(x+30^{\circ}\right)$ ．
（c）（i）Given that $5+\sin ^{2} \theta=(5+3 \cos \theta) \cos \theta$ ，show that $\cos \theta=\frac{3}{4}$ ． （5 marks）
（ii）Hence solve the equation $5+\sin ^{2} 2 x=(5+3 \cos 2 x) \cos 2 x$ in the interval $0<x<2 \pi$ ，giving your values of x in radians to three significant figures．（3 marks）

