Mark Scheme 4737
June 2006

1 （i）	4＋4＋8＋7＋6＝ 29 litres per second	$\begin{aligned} & \mathrm{B} 1 \\ & {[1]} \end{aligned}$	For 29
（ii）	$4-1-2+3+3+5=12$ litres per second $0-5-4+3+0+5=-1$ So minimum flow across cut is $\mathbf{0}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [4] } \end{aligned}$	For using upper and lower capacities correctly For showing how 12 （given）was worked out For a substantially correct calculation For 0 ，from an appropriate calculation
（iii）	Flow in arc $C E \geq 2$ and flow in arc $C F \geq$ 3， so at least 5 litres per second must flow into C At most 4 litres per second flow into A ，of which at least 1 flows out to B and 2 flow out to E ，so at most 1 litre per second can flow along $A D$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{M} 1 \\ & \text { A1 } \\ & {[4]} \end{aligned}$	For any reasonable attempt（eg $C E=2$ ， $C F=3$ ） For correct reasoning For identifying ≤ 4 in and ≥ 3 out or equivalent For a correct conclusion
（iv）	Either a diagram or a description of a flow of 11 litres per second． Arcs $A D, A E, B E, C E, C F$ must all be at their minimum capacities．	M1 A1 A1 ［3］	For a flow of 11 litres per second from S to T Flow satisfies all lower capacities Flow satisfies all upper capacities
（v）	$11 \leq$ maximum flow ≤ 12	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \text { [2] } \end{aligned}$	11 as lower bound 12 as upper bound（max flow $=12 \Rightarrow$ B0，B1） 14

