Mark Scheme 4737 January 2006

\begin{tabular}{|c|c|c|c|c|}
\hline 6 \& （i） \& In column \(Y\) ：\(-3<5\) so \(A\) does not dominate \(B\) In column \(X\) ：\(-3<2\)（or column \(Z\) ： \(1<4\) ）so \(B\) does not dominate \(A\) \& \[
\begin{aligned}
\& \text { B1 } \\
\& \text { B1 }
\end{aligned}
\] \& \begin{tabular}{l}
For \(-3<5\) or equivalent \\
For \(-3<2\) or \(1<4\) or equivalent
\end{tabular} \\
\hline \& （ii） \& The worst outcomes for Maria are： \(X\) lose 4，\(Y\) lose 5，\(Z\) lose 4 \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& \begin{tabular}{l}
For finding column maxima \\
For rejecting 5 as being bigger than 4，or using a word like＇lose＇or＇\(-4,-5,-4\)＇
\end{tabular} \\
\hline \& （iii） \& If Lucy plays \(B\) she could win as much as \& B1 \& For＇5 is the most she can win＇or equivalent \\
\hline \& （iv） \& Need to add 3 throughout matrix to make values non－negative，this removes the 3 again \& B1 \& For＇add 3 throughout matrix＇or equivalent \\
\hline \& （v） \& Having added 3 throughout，the expected number of points win by Lucy when Maria chooses strategy \(X\) is \(5 p_{1}+0 p_{2}+7 p_{3}\) ，and similarly the second expression is the expected number of points won by Lucy when Maria chooses strategy \(Y\) and the third expression is the expected number of points won by Lucy if Maria chooses strategy \(Z\) \& M1

A1 \& | For showing where one of the expressions came from，or for referring to＇when Maria plays each of her strategies＇or equivalent in a non－specific way |
| :--- |
| For specifically linking the expressions to Maria choosing strategy X ，strategy Y and strategy Z in that order |

\hline \& （vi） \& The number of points that Lucy can expect to win cannot be less than the worst of the three expressions，so it is less than or equal to each of them． \& \[
$$
\begin{aligned}
& \mathrm{M} 1 \\
& \mathrm{~A} 1
\end{aligned}
$$

\] \& | For reference to＇number of points won by Lucy’ or equivalent |
| :--- |
| For reference to＇the worst outcome＇or equivalent |

\hline \& （vii） \& $$
\begin{aligned}
& 2\left(p_{1}\right)+4\left(p_{3}\right)=2 p_{1}+4\left(1-p_{1}\right)=4-2 p_{1} \text { (given) } \\
& 4 p_{1}-3\left(1-p_{1}\right)=7 p_{1}-3
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \mathrm{B} 1 \\
& \mathrm{~B} 1
\end{aligned}
$$

\] \& | For $2 p+4(1-p)$ |
| :--- |
| For $7 p-3$ |

\hline \& （viii） \& | $\begin{aligned} & 4-2 p_{1}=7 p_{1}-3 \Rightarrow p_{1}=\frac{7}{9} \\ & p_{1}=\frac{7}{9} \Rightarrow 2 \frac{4}{9}, p_{1}=0 \Rightarrow \min (4,-3)=-3, \\ & p_{1}=1 \Rightarrow \min (2,4)=2 \end{aligned}$ |
| :--- |
| Maximin is when $p_{1}=\frac{7}{9} \Rightarrow$ choose randomly between A and C so that A is chosen with probability $\frac{7}{9}$ | \& | B1 |
| :--- |
| M1 |
| A1 | \& | For solving $4-2 p_{1}=$ their expression to get a probability |
| :--- |
| For evaluating $4-2 p_{1}$ at their p_{1} and the values -3 and 2 |
| For reference to maximin，or equivalent，leading to selection of $p=\frac{7}{9}$ ，or in context |

\hline
\end{tabular}

