General Certificate of Education（A－level） June 2013

Mathematics／Statistics
MSISS1B

（Specification 6360／6380）

Statistics 1B

Final

Mark schemes are prepared by the Principal Examiner and considered，together with the relevant questions，by a panel of subject teachers．This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination．The standardisation process ensures that the mark scheme covers the students＇responses to questions and that every examiner understands and applies it in the same correct way．As preparation for standardisation each examiner analyses a number of students＇scripts：alternative answers not already covered by the mark scheme are discussed and legislated for．If，after the standardisation process， examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner．

It must be stressed that a mark scheme is a working document，in many cases further developed and expanded on the basis of students＇reactions to a particular paper． Assumptions about future mark schemes on the basis of one year＇s document should be avoided；whilst the guiding principles of assessment remain constant，details will change， depending on the content of a particular examination paper．

Further copies of this Mark Scheme are available from：aqa．org．uk
Copyright © 2013 AQA and its licensors．All rights reserved．

Copyright

AQA retains the copyright on all its publications．However，registered schools／colleges for AQA are permitted to copy materia from this booklet for their own internal use，with the following important exception：AQA cannot give permission to schools／colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre．

Set and published by the Assessment and Qualifications Alliance．

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Vorft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2，1	2 or 1 （or 0 ）accuracy marks
－x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure（s）
dp	decimal place（s）

No Method Shown

Where the question specifically requires a particular method to be used，we must usually see evidence of use of this method for any marks to be awarded．

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method，we must award full marks．However， the obvious penalty to candidates showing no working is that incorrect answers，however close，earn no marks．

Where a question asks the candidate to state or write down a result，no method need be shown for full marks．

Where the permitted calculator has functions which reasonably allow the solution of the question directly，the correct answer without working earns full marks，unless it is given to less than the degree of accuracy accepted in the mark scheme，when it gains no marks．

Otherwise we require evidence of a correct method for any marks to be awarded．

Q	Solution	Marks	Total	Comments
3（a）（i）	$\underline{O \sim B}(40, p)$			Accept percentage equivalents except for 27
	$\mathrm{P}(N S \leq 10)=\underline{0.97}$	B1	1	AWRT（0．9701）
（ii）	$\mathrm{P}(L P E \geq 25)=\underline{1-(0.9231}$ or 0．9597）	M1		Requires＇ 1 － Accept 3 dp rounding Can be implied by（ 0.0769 to 0.077 ） but not by（ 0.04 to 0.0403 ）
	$=\underline{0.077}$	A1	2	AWRT（0．0769）
（iii）	$\mathrm{P}(U P E=2)=\binom{40}{2}(0.175)^{2}(0.825)^{38}$	M1		Correct expression；may be implied by a correct answer Ignore extra terms
	$=\underline{0.016}$	A1	2	AWRT（0．0160）
（iv）	$p=0.85-0.50=\underline{\mathbf{0 . 3 5}}$	B1		CAO；award on value only May be implied by any of four probabilities below or by a correct answer
	$\mathrm{P}(10<X<15)=0.5721$ or $0.6946\left(p_{1}\right)$	M1		Accept 3 dp rounding May be implied by a correct answer
	MINUS 0.1215 or 0.0644 （ p_{2} ）	M1		Accept 3 dp rounding May be implied by a correct answer
	$=\underline{0.45 \text { to } 0.451}$	A1	4	AWFW（0．4506）
（b）	$p=0.85-0.175=\underline{\mathbf{0 . 6 7 5}}$ or $p^{\prime}=\underline{\mathbf{0 . 3 2 5}}$	B1		CAO；may be implied by 27 Each can be found in several ways CAO；may be implied by 13 or 27
	Number $=40 \times 0.675=\underline{\mathbf{2 7}}$	B1	2	CAO；can be found in several ways
	Total		11	

Q	Solution	Marks	Total	Comments
4（a）（i）	$r_{g y}=\frac{24.15}{\sqrt{0.1196 \times 5880}}=\underline{\mathbf{0 . 9 1} \text { to } \mathbf{0 . 9 1 1}}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		May be implied by a correct answer in （a）（i）or（a）（ii）or（c）（i） AWFW
（ii）	$\begin{aligned} & r_{\text {ly }}=\frac{10.25}{\sqrt{0.0436 \times 5880}}=\underline{\mathbf{0 . 6 4 ~ t o}} \\ & \underline{\mathbf{0 . 6 4 1}} \end{aligned}$	A1	3	AWFW（0．64017）
（b）	（Very）Strong positive correlation	Bdep 1		Dependent on $0.9 \leq r_{g y}<1$
	（Some）Moderate positive correlation	Bdep 1		Dependent on $0.6 \leq r_{l y} \leq 0.7$ Bdep0 for any mention of＇strong＇
	girth and weight and／or length and weight	B1	3	At least one interpretation in context
（c）（i）	$r_{x y}=\frac{5662.97}{\sqrt{5656.15 \times 5880}}=\underline{\mathbf{0 . 9 8} \text { to } 0.982}$	B1		AWFW (0.98196)
	Most strongly correlated with y is \underline{x}	Bdep1	2	CAO；dependent on $0.97 \leq r_{x y}<1$
（ii）	$x=69.3 \times 1.25^{2} \times 1.15=\underline{\mathbf{1 2 4} \text { to } \mathbf{1 2 5}}$	$\begin{gather*} \text { M1 } \\ \text { A1 } \tag{124.52} \end{gather*}$	2	May be implied by a correct answer AWFW
（iii）	$b=\frac{5662.97}{5656.15}$	M1		116／115．4（＝1．005）\Rightarrow M0 A0
	1 to 1.002	A1		AWFW（1．00121）
	$a=116-115.4 b=\underline{0.3 ~ t o ~ 0.6}$	B1	3	AWFW（0．46085）
（iv）	$r_{x y} \approx$ nearly／almost／close to（ + ） $\mathbf{1}$ or very strong／almost exact（positive） correlation （Stating $r_{x y}=0.98$ to $0.982 \Rightarrow$ Bdep0）	Bdep 1		OE Dependent on $0.97 \leq r_{x y}<1$ OE；＇strong＇is not sufficient
	$\begin{aligned} & b=/ \approx / \text { nearly/almost/close to }(+) \mathbf{1} \\ & \mathrm{a} \approx / \text { nearly/almost/close to } \mathbf{0} \\ & \text { (Stating } a=0.4 \text { to } 0.6 \Rightarrow \text { Bdep } 0 \text {) } \end{aligned}$	Bdep1 Bdep1		OE；must reference value of 1 or unity Dependent on M1 A1 in（c）（iii） OE；must reference value of 0 or origin Dependent on B1 in（c）（iii）
	Estimate（not＇it＇or＇this＇or＇value＇， etc）is （very／highly／likely to be）accurate／precise／ reliable or（almost）exact／correct	Bdep 1	4	OE ；dependent on scoring at least 2 of the previous 3 marks in（c）（iv） Fairly accurate，good approximation， （quite）likely，（very）close，reasonable，etc \Rightarrow Bdep0
	Total		17	

Q	Solution	Marks	Total	Comments
5（a）（i）	$\mathrm{P}(\mathrm{A}=2)=0.90 \times 0.95=\underline{\mathbf{0 . 8 5} \text { to } \mathbf{0 . 8 6}}$	B1		AWFW（0．855 or 171／200 OE）
（ii）	$\begin{aligned} \mathrm{P}(\mathrm{~A}=1) & =(0.90 \times 0.05)+(0.10 \times 0.95) \\ \text { or } & =1-[0.855+(0.10 \times 0.05)] \\ & \underline{\mathbf{0 . 1 4}} \end{aligned}$	M1 A1	3	May be implied by a correct answer Do not ignore extra terms CAO （7／50 OE）
（b）（i）	$\mathrm{P}\left(\mathrm{A}_{\mathrm{W}} \cap \mathrm{D}_{\mathrm{W}}\right)=0.90 \times 0.80$	M1		May be implied by a correct answer
	$=\underline{0.72}$	A1	2	CAO（18／25 OE）
（ii）	$\begin{aligned} \mathrm{P}\left(\mathrm{~A}_{B} \cap \mathrm{D}_{\mathrm{B}}\right) & =(\mathrm{b})(\mathrm{i}) \times 0.95(\times 1) \\ \text { or } & =0.90 \times 0.80 \times 0.95(\times 1) \\ \text { or } & =(\mathrm{a})(\mathrm{i}) \times 0.80 \end{aligned}$	M1		May be implied by a correct answer
	$\underline{0.68 \text { to } 0.685}$	A1	2	AWFW（0．684 or 171／250 OE）
（iii） （iv）	$\mathrm{P}\left(\mathrm{A}_{\mathrm{T}} \cap \mathrm{D}^{\prime} \mathrm{T}\right)=0.95 \times 0=\underline{\mathbf{0}}$	B1	1	CAO；award on value only
	$\begin{aligned} & \mathrm{P}(\text { neither })= \mathrm{P}\left([\mathrm { A } ^ { \prime } { } _ { \mathrm { w } } \cap \mathrm { D } ^ { \prime } { } _ { \mathrm { w } }] \cap \left[\mathrm{~A}_{\mathrm{T}}^{\prime} \cap\right.\right. \\ &\left.\left.\mathrm{D}_{\mathrm{T}}^{\prime}\right]\right) \end{aligned}$			
	$(1-0.90) \times(1-0.15)$	M1 m1		Accept 0.085 or $17 / 200$ OE Award M1 and m1 on value（s）only Accept 0.05 or $1 / 20$ OE
	or $\mathrm{P}($ neither $)=$			
	$(1-0.90) \times(1-0.95)$	（M1） （m1）		Accept 0.005 or $1 / 200$ OE Award M1 and m1 on value（s）only Accept 0.85 or $17 / 20$ OE
	$=0.085 \times 0.05$ or 0.005×0.85			OE
	$=\underline{0.0042}$ to 0.0043	A1	3	AWFW（0．00425 or 17／4000 OE）
	Total		11	

Q	Solution	Marks	Total	Comments
6（a）（i）	$\bar{x}=\frac{497.5}{25}=\quad \underline{\mathbf{1 9 . 9}}$	B1		CAO
	$98 \%(0.98) \Rightarrow z=\underline{2.32 ~ t o ~} 2.33$	B1		AWFW（2．3263）
	CI for μ is $\quad \bar{x} \pm z \times \frac{\sigma}{\sqrt{n}}$	M1		Used with z（2．05 to 2．58）， \bar{x}（497．5 or 19 to 21 ）and $\sigma(0.4)$ and $\div \sqrt{n}$ with $n>1$
	Thus $\quad 19.9 \pm 2.3263 \times \frac{0.4}{\sqrt{25}}$	A1		$\begin{aligned} & z(2.05 \text { to } 2.06 \text { or } 2.32 \text { to } 2.33 \\ & \text { or } 2.57 \text { to } 2.58), \\ & \bar{x}(19.9) \text { and } \sigma(0.4) \\ & \text { and } \div \sqrt{25 \text { or } 24} \end{aligned}$
	Hence or $\underline{19.9 \pm 0.2}$ $\underline{(19.7,20.1)}$	A1	5	CAO／AWRT (0.186104) AWRT
（ii）	Clear correct comparison of 20 with CI	BF1		F on CI providing it contains 20
	eg 20 is within CI or $\mathrm{LCL}<20<\mathrm{UCL}$ so			Quoting values for CI is not required
	Agree with claim or no reason to doubt claim	Bdep 1	2	OE；dependent on previous BF1
（iii）	Weight of sand in a bag or $\boldsymbol{X} / \boldsymbol{x}$ or original distribution or parent population	B1	1	It／mean／data／sample／information／sand is normal $\Rightarrow \mathrm{B} 0$
	is normal			Reference only to sample size or standard deviation $\Rightarrow \mathrm{B} 0$

Q	Solution	Marks	Total	Comments
6（b）（i）	Y			Accept percentage equivalent probabilities
	$\mathrm{V}($ mean $)=\underline{0.35^{2} / 10 \text { or } 0.0122 \text { to } 0.0123}$			CAO／AWFW（0．01225）
	$S D($ mean $)=\underline{0.35 / \sqrt{10} \text { or } 0.11 \text { to } 0.111}$			CAO／AWFW（0．11068）
	$\mathrm{P}(\bar{Y}<25)=\mathrm{P}\left(\mathrm{Z}<\frac{25-25.25}{0.35 / \sqrt{10}}\right)$	M1		Standardising 25 using 25.25 and $0.35 / \sqrt{10}$ OE but allow（25．25－25）
	$=\mathrm{P}(\mathrm{Z}<-2.25877)=1-\mathrm{P}(\mathrm{Z}<2.25877)$	m1		Correct area change May be implied by a correct answer or an answer $<\mathbf{0 . 5}$
	$=1-(0.98809 \text { to } 0.98778)$			
	$=\underline{0.011} \text { to } 0.013$	A1	4	$\begin{aligned} & \text { AWFW } \quad(0.01195) \\ & (0.987 \text { to } 0.989) \Rightarrow \mathrm{B} 1 \mathrm{M} 1 \mathrm{~m} 0 \mathrm{~A} 0 \end{aligned}$
（ii）	$\mathrm{P}(Y>25)=\mathrm{P}\left(Z>\frac{25-25.25}{0.35}\right)$	M1		Standardising 25 using 25.25 and 0.35 but allow（ $25.25-25$ ）
	$=\mathrm{P}(Z>-0.71429)=\mathrm{P}(Z<0.71429)$			
	$=\underline{0.761} \text { to } 0.764$	A1		$\begin{aligned} & \text { AWFW } \\ & (0.236 \text { to } 0.239) \Rightarrow \text { M1 A0 } \end{aligned}$
	$\mathrm{P}(Y>25$ in each of 10$)=\boldsymbol{p}^{\mathbf{1 0}}$	M1		Any p^{10} providing $0<p<1$ May be implied by a correct answer
	$=\underline{0.065 ~ t o ~} 0.068$	A1	4	AWFW（0．06641）
	Total		8	
	TOTAL		75	

